

Sound Development Group, L.L.C.

Engineering, Surveying & Land Development Services

August 23, 2023

Town of La Conner
604 N. Third Street
La Conner, WA 98257

Re: Centre Street Mixed-Use

To Whom it May Concern:

Please accept this letter to address the required Minimum Requirements of the DOE 2019 Stormwater Management Manual and the La Conner Zoning Code 15.100.

The site, 306 Centre Street, is currently partially graveled, with utilities, walls, and remnants of a single - family residence. It is proposed to construct a 9,743 square-foot mixed-use building, providing 5 AirBnB units (lodging) and 14 apartment units (dwelling), with adjoining asphalt drive, covered asphalt parking, utilities, landscaping and frontage improvements on Centre Street and Fourth Street.

The site will create approximately 12,475 square feet of new or replaced hard surface, so must meet code 15.100.090 New Development and comply with LCMC 15.100.120 through 15.100.210.

The Town of La Conner has a regional stormwater treatment and detention system; only onsite improvements are addressed here.

Minimum Requirement #1 – Erosion and Sediment Control

- 1) Stabilization and Sediment Trapping.
 - a. The site construction has potential to slope to the east, north and west. Silt fence has been denoted to retain silt laden water onsite. If construction occurs during the dry season, silt fence may be replaced with clearing limits fence until the wet season begins.
- 2) Delineate Clearing and Easement Limits.
 - a. Clearing limits or silt fence will be installed on the east, north and west boundary. Clearing limits on the south side may be accomplished with clearing fence or lathe with surveyor's tape.
- 3) Protection of Adjacent Properties.
 - a. Silt fencing on the west, and the uphill slope to the south will protect the adjacent properties from sediment deposition.
- 4) Timing and Stabilization of Sediment Trapping Measures.
 - a. A sediment trap has been sized with a detail on the plans. Other alternatives may be explored as requested by the contractor. Sediment trap may not be necessary due to the extent of existing gravel onsite.

- 5) Cut and Fill Slopes.
 - a. No extensive cut and fill slopes are expected onsite, except for trenching. Trench spoils will be placed on the uphill side of the trench where feasible.
- 6) Controlling Off-Site Erosion.
 - a. An increase of volume, velocity and peak flow rate is not expected due to the extensive impervious surface currently on site. If any type of ponding occurs with a point discharge, measures will be taken to capture and detain the runoff within a sediment trap or other functional BMP.
- 7) Stabilization of Temporary Conveyance Channel and Outlets.
 - a. Temporary ditch sizing has been added to the sediment trap detail/reference.
- 8) Storm Drain Inlet Protection.
 - a. All existing storm inlets and all new inlets placed into service during construction have been noted with storm drain inlet protection. Catch basins within 300' of the site have also been denoted.
- 9) Underground Utility Construction.
 - a. It has been noted on the TESC plan that a maximum of 500 LF of trench shall be opened at one time; trench spoils are to be placed on the uphill side of the trench; dewatering, though not expected, has been noted to discharge to the sediment trap sized for the property.
- 10) Construction Access Routes:
 - a. Construction access will likely occur through both of the site's existing graveled access points, one an entrance, one an exit. If the existing gravel pads do not perform to retain sediments from vehicle wheels, then a construction access will be installed. Street sweeping and washing is noted within the TESC specs.
- 11) Removal of Temporary BMP's.
 - a. BMP's are noted to be removed within 30 days after final site stabilization.
- 12) Dewatering Construction Sites.
 - a. All dewatering will be discharged to the sediment trap onsite.
- 13) Control of Pollutants.
 - a. No concrete trucks will be allowed to washout on site.
 - b. A concrete washout has been denoted for the concrete pouring and finishing tools.
 - c. A Porta-potty has been denoted on site.
 - d. No vehicle maintenance will be allowed on site, per the TESC plan.
- 14) Maintenance
 - a. BMP's shall be inspected and maintained on a regular basis, depending on the time of year and rainfall events.

Minimum Requirement #2 – Preservation of Natural Drainage Systems

The site currently sheet flows to the two existing bounding roads and their respective stormwater catch basins, Centre Street and Fourth Street. Stormwater will continue to discharge to the existing La Conner public storm system.

Minimum Requirement #3 – Source Control of Pollution

Applicable Source Controls are Attached in Attachment D, and a note referencing these Source Control BMP's have been included on the TESC Plan.

Minimum Requirement #4 – Runoff Treatment BMP's

The site will only create approximately 2057 sf of pollution generating hard surfaces. A Stormfilter has been sized to treat the water prior to discharge to the Town of La Conner stormwater system. See calculations in Attachment A, and the proposed Stormfilter in Attachment B.

It should be noted that the existing conditions were not evaluated for the treatment sizing within the WWHM calculations.

Minimum Requirement #5 – Streambank Erosion Control

The site does not discharge to a stream, streambank erosion control is not required.

Minimum Requirement #6 – Wetlands

The site does not discharge directly or indirectly to a wetland.

Minimum Requirement #7 – Water Quality Sensitive Areas

This requirement does not apply.

Minimum Requirement #8 – Off-Site Analysis and Mitigation

The site is not subject to Minimum Requirement #5; This requirement does not apply.

Minimum Requirement #9 – Operation and Maintenance

The completed site will be required to maintain its stormwater facilities. See Attachment C for operation and maintenance items.

Please refer to the attached abbreviated site plan, and if you have any questions, please feel free to contact me.

Sincerely,

Pat Severin, PE

Attachments:

A – WWHM2012 Calculations

B – Stormfilter

C – Operation and Maintenance

Appendix A – WWHM2012 Stormwater Calculations

WWHM2012

PROJECT REPORT

General Model Information

Project Name: 21098

Site Name:

Site Address:

City:

Report Date: 8/23/2023

Gage: Burlington

Data Start: 1948/10/01

Data End: 2009/09/30

Timestep: 15 Minute

Precip Scale: 0.833

Version Date: 2021/08/18

Version: 4.2.18

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Landuse Basin Data

Predeveloped Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre

Pervious Total 0

Impervious Land Use acre
ROADS FLAT 0.05

Impervious Total 0.05

Basin Total 0.05

Element Flows To:

Surface Interflow Groundwater

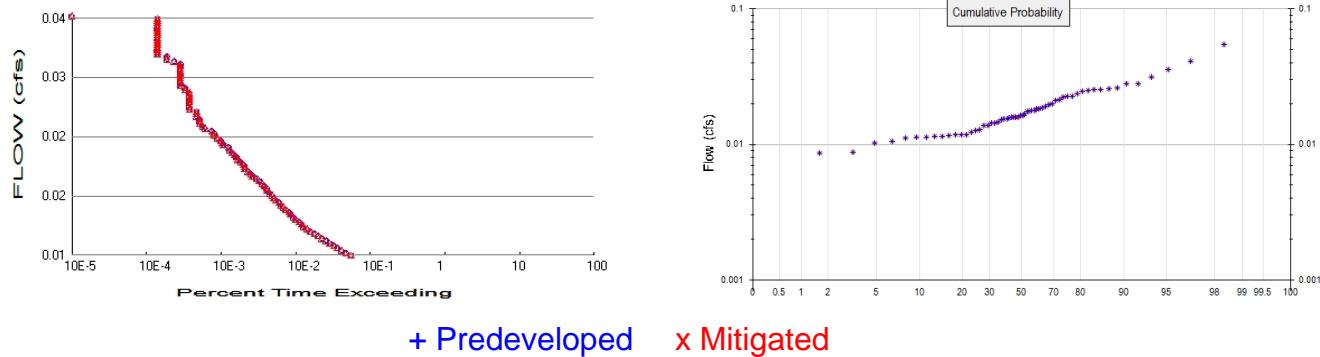
Mitigated Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use	acre
ROADS FLAT	0.05
Impervious Total	0.05
Basin Total	0.05

Element Flows To:

Surface	Interflow	Groundwater
---------	-----------	-------------


Routing Elements

Predeveloped Routing

Mitigated Routing

Analysis Results

POC 1

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 0
Total Impervious Area: 0.05

Mitigated Landuse Totals for POC #1

Total Pervious Area: 0
Total Impervious Area: 0.05

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

Return Period	Flow(cfs)
2 year	0.016584
5 year	0.023257
10 year	0.02817
25 year	0.034959
50 year	0.040452
100 year	0.046327

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.016584
5 year	0.023257
10 year	0.02817
25 year	0.034959
50 year	0.040452
100 year	0.046327

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1949	0.025	0.025
1950	0.013	0.013
1951	0.021	0.021
1952	0.023	0.023
1953	0.025	0.025
1954	0.013	0.013
1955	0.012	0.012
1956	0.009	0.009
1957	0.025	0.025
1958	0.011	0.011

1959	0.012	0.012
1960	0.019	0.019
1961	0.012	0.012
1962	0.020	0.020
1963	0.012	0.012
1964	0.014	0.014
1965	0.036	0.036
1966	0.015	0.015
1967	0.028	0.028
1968	0.022	0.022
1969	0.011	0.011
1970	0.028	0.028
1971	0.016	0.016
1972	0.010	0.010
1973	0.018	0.018
1974	0.014	0.014
1975	0.026	0.026
1976	0.031	0.031
1977	0.014	0.014
1978	0.025	0.025
1979	0.016	0.016
1980	0.017	0.017
1981	0.016	0.016
1982	0.016	0.016
1983	0.015	0.015
1984	0.016	0.016
1985	0.020	0.020
1986	0.011	0.011
1987	0.012	0.012
1988	0.026	0.026
1989	0.017	0.017
1990	0.016	0.016
1991	0.023	0.023
1992	0.018	0.018
1993	0.009	0.009
1994	0.012	0.012
1995	0.010	0.010
1996	0.021	0.021
1997	0.041	0.041
1998	0.017	0.017
1999	0.008	0.008
2000	0.024	0.024
2001	0.015	0.015
2002	0.011	0.011
2003	0.014	0.014
2004	0.054	0.054
2005	0.019	0.019
2006	0.018	0.018
2007	0.016	0.016
2008	0.016	0.016
2009	0.018	0.018

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Rank	Predeveloped	Mitigated
1	0.0543	0.0543
2	0.0411	0.0411
3	0.0355	0.0355

4	0.0313	0.0313
5	0.0280	0.0280
6	0.0278	0.0278
7	0.0260	0.0260
8	0.0258	0.0258
9	0.0255	0.0255
10	0.0252	0.0252
11	0.0251	0.0251
12	0.0245	0.0245
13	0.0236	0.0236
14	0.0226	0.0226
15	0.0225	0.0225
16	0.0222	0.0222
17	0.0213	0.0213
18	0.0210	0.0210
19	0.0198	0.0198
20	0.0195	0.0195
21	0.0190	0.0190
22	0.0187	0.0187
23	0.0184	0.0184
24	0.0184	0.0184
25	0.0178	0.0178
26	0.0178	0.0178
27	0.0175	0.0175
28	0.0174	0.0174
29	0.0168	0.0168
30	0.0164	0.0164
31	0.0164	0.0164
32	0.0160	0.0160
33	0.0159	0.0159
34	0.0158	0.0158
35	0.0158	0.0158
36	0.0156	0.0156
37	0.0155	0.0155
38	0.0155	0.0155
39	0.0152	0.0152
40	0.0145	0.0145
41	0.0145	0.0145
42	0.0143	0.0143
43	0.0138	0.0138
44	0.0137	0.0137
45	0.0128	0.0128
46	0.0126	0.0126
47	0.0122	0.0122
48	0.0118	0.0118
49	0.0117	0.0117
50	0.0117	0.0117
51	0.0116	0.0116
52	0.0115	0.0115
53	0.0114	0.0114
54	0.0113	0.0113
55	0.0112	0.0112
56	0.0112	0.0112
57	0.0104	0.0104
58	0.0103	0.0103
59	0.0088	0.0088
60	0.0086	0.0086
61	0.0083	0.0083

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0083	1178	1178	100	Pass
0.0086	1003	1003	100	Pass
0.0089	879	879	100	Pass
0.0093	769	769	100	Pass
0.0096	690	690	100	Pass
0.0099	609	609	100	Pass
0.0102	548	548	100	Pass
0.0106	481	481	100	Pass
0.0109	423	423	100	Pass
0.0112	380	380	100	Pass
0.0115	330	330	100	Pass
0.0119	303	303	100	Pass
0.0122	273	273	100	Pass
0.0125	253	253	100	Pass
0.0128	237	237	100	Pass
0.0132	212	212	100	Pass
0.0135	198	198	100	Pass
0.0138	182	182	100	Pass
0.0141	174	174	100	Pass
0.0145	155	155	100	Pass
0.0148	147	147	100	Pass
0.0151	136	136	100	Pass
0.0154	128	128	100	Pass
0.0158	115	115	100	Pass
0.0161	109	109	100	Pass
0.0164	103	103	100	Pass
0.0167	95	95	100	Pass
0.0171	88	88	100	Pass
0.0174	86	86	100	Pass
0.0177	80	80	100	Pass
0.0180	76	76	100	Pass
0.0184	69	69	100	Pass
0.0187	63	63	100	Pass
0.0190	56	56	100	Pass
0.0193	53	53	100	Pass
0.0197	49	49	100	Pass
0.0200	44	44	100	Pass
0.0203	44	44	100	Pass
0.0206	42	42	100	Pass
0.0210	39	39	100	Pass
0.0213	36	36	100	Pass
0.0216	34	34	100	Pass
0.0219	32	32	100	Pass
0.0223	30	30	100	Pass
0.0226	28	28	100	Pass
0.0229	27	27	100	Pass
0.0232	23	23	100	Pass
0.0236	22	22	100	Pass
0.0239	21	21	100	Pass
0.0242	19	19	100	Pass
0.0245	17	17	100	Pass
0.0249	17	17	100	Pass
0.0252	16	16	100	Pass

0.0255	13	13	100	Pass
0.0258	12	12	100	Pass
0.0262	11	11	100	Pass
0.0265	11	11	100	Pass
0.0268	11	11	100	Pass
0.0271	10	10	100	Pass
0.0275	10	10	100	Pass
0.0278	10	10	100	Pass
0.0281	8	8	100	Pass
0.0284	8	8	100	Pass
0.0288	8	8	100	Pass
0.0291	8	8	100	Pass
0.0294	8	8	100	Pass
0.0297	8	8	100	Pass
0.0301	8	8	100	Pass
0.0304	8	8	100	Pass
0.0307	7	7	100	Pass
0.0310	7	7	100	Pass
0.0314	6	6	100	Pass
0.0317	6	6	100	Pass
0.0320	6	6	100	Pass
0.0323	6	6	100	Pass
0.0327	6	6	100	Pass
0.0330	6	6	100	Pass
0.0333	6	6	100	Pass
0.0336	6	6	100	Pass
0.0340	6	6	100	Pass
0.0343	6	6	100	Pass
0.0346	5	5	100	Pass
0.0349	4	4	100	Pass
0.0353	4	4	100	Pass
0.0356	3	3	100	Pass
0.0359	3	3	100	Pass
0.0362	3	3	100	Pass
0.0366	3	3	100	Pass
0.0369	3	3	100	Pass
0.0372	3	3	100	Pass
0.0375	3	3	100	Pass
0.0379	3	3	100	Pass
0.0382	3	3	100	Pass
0.0385	3	3	100	Pass
0.0388	3	3	100	Pass
0.0392	3	3	100	Pass
0.0395	3	3	100	Pass
0.0398	3	3	100	Pass
0.0401	3	3	100	Pass
0.0405	3	3	100	Pass

Water Quality

Water Quality BMP Flow and Volume for POC #1

On-line facility volume: 0.0045 acre-feet

On-line facility target flow: 0.0066 cfs.

Adjusted for 15 min: 0.0066 cfs.

Off-line facility target flow: 0.0037 cfs.

Adjusted for 15 min: 0.0037 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

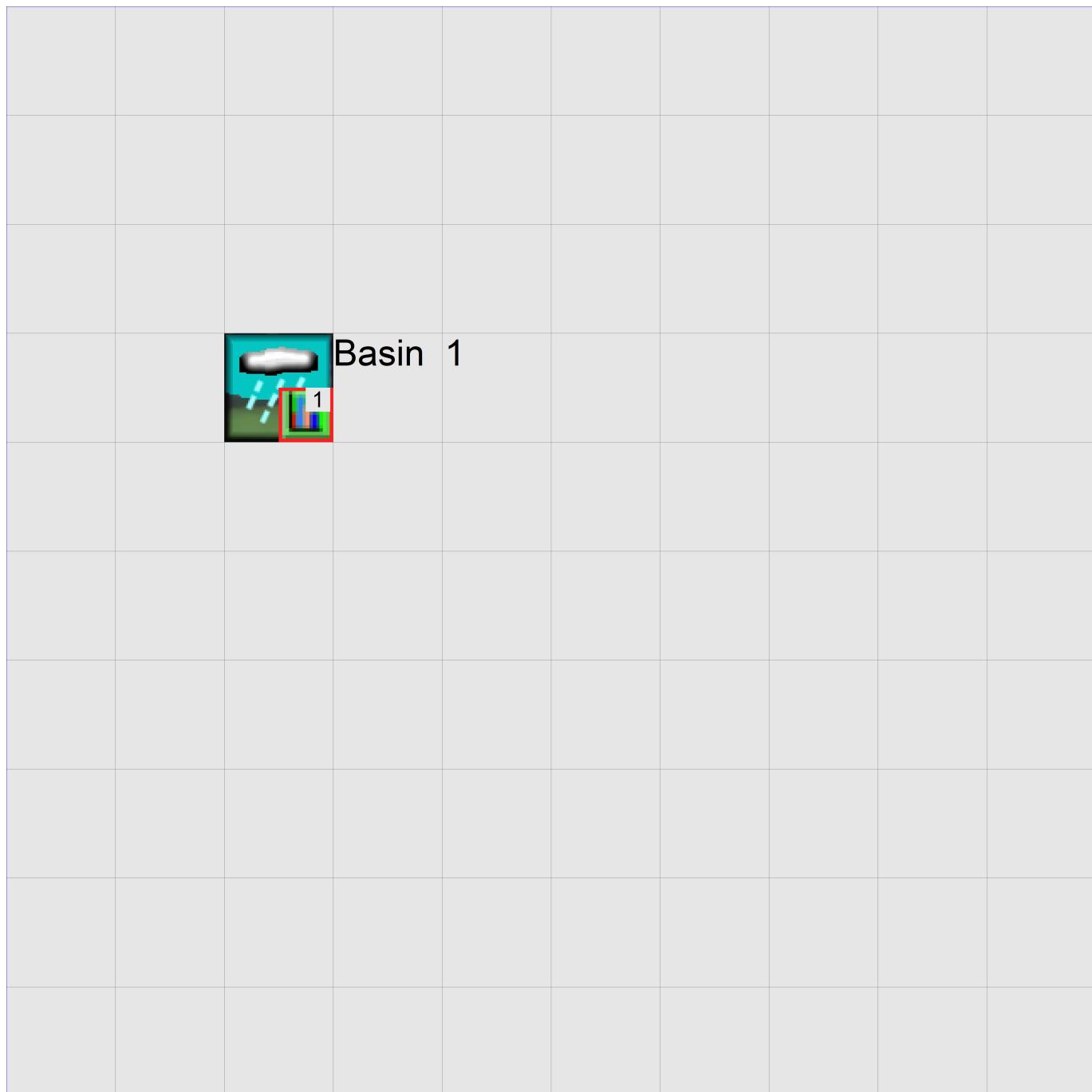
Model Default Modifications

Total of 0 changes have been made.

PERLND Changes


No PERLND changes have been made.

IMPLND Changes


No IMPLND changes have been made.

Appendix

Predeveloped Schematic

Mitigated Schematic

Predeveloped UCI File

```
RUN

GLOBAL
  WWHM4 model simulation
  START      1948 10 01      END      2009 09 30
  RUN INTERP OUTPUT LEVEL    3      0
  RESUME      0 RUN      1
  UNIT SYSTEM      1
END GLOBAL

FILES
<File> <Un#> <-----File Name----->***  

<-ID->
  WDM      26  21098.wdm
  MESSU    25  Pre21098.MES
  27  Pre21098.L61
  28  Pre21098.L62
  30  POC210981.dat
END FILES

OPN SEQUENCE
  INGRP          INDELT 00:15
    IMPLND      1
    COPY        501
    DISPLAY     1
  END INGRP
END OPN SEQUENCE
DISPLAY
  DISPLAY-INFO1
    # - #-----Title----->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
    1          Basin 1           MAX           1   2   30   9
  END DISPLAY-INFO1
END DISPLAY
COPY
  TIMESERIES
    # - # NPT NMN ***
    1          1   1
  501        1   1
  END TIMESERIES
END COPY
GENER
  OPCODE
    # # OPCD ***
  END OPCODE
  PARM
    # # K ***
  END PARM
END GENER
PERLND
  GEN-INFO
    <PLS ><-----Name----->NBLKS  Unit-systems  Printer ***
    # - #                         User  t-series Engl Metr ***
                                in   out
  END GEN-INFO
*** Section PWATER***

ACTIVITY
  <PLS > ***** Active Sections *****
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
END ACTIVITY

PRINT-INFO
  <PLS > ***** Print-flags *****
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *****
END PRINT-INFO

PWAT-PARM1
  <PLS > PWATER variable monthly parameter value flags ***
  # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INF C HWT ***
```

```

END PWAT-PARM1

PWAT-PARM2
  <PLS >      PWATER input info: Part 2      ***
  # - # ***FOREST      LZSN      INFILT      LSUR      SLSUR      KVARY      AGWRC
END PWAT-PARM2

PWAT-PARM3
  <PLS >      PWATER input info: Part 3      ***
  # - # ***PETMAX      PETMIN      INFEXP      INFILD      DEEPFR      BASETP      AGWETP
END PWAT-PARM3

PWAT-PARM4
  <PLS >      PWATER input info: Part 4      ***
  # - #      CEPSC      UZSN      NSUR      INTFW      IRC      LZETP  ***
END PWAT-PARM4

PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
  ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
  # - # *** CEPS      SURS      UZS      IFWS      LZS      AGWS      GWVS
END PWAT-STATE1

END PERLND

IMPLND
  GEN-INFO
    <PLS ><-----Name----->  Unit-systems  Printer ***
    # - #                      User  t-series Engl Metr ***
                                in    out
    1      ROADS/FLAT          1      1      1      27      0
END GEN-INFO
*** Section IWATER***

ACTIVITY
  <PLS > ***** Active Sections *****
  # - # ATMP  SNOW  IWAT  SLD  IWG  IQAL  ***
  1      0      0      1      0      0      0
END ACTIVITY

PRINT-INFO
  <ILS > ***** Print-flags ***** PIVL  PYR
  # - # ATMP  SNOW  IWAT  SLD  IWG  IQAL  *****
  1      0      0      4      0      0      0      1      9
END PRINT-INFO

IWAT-PARM1
  <PLS > IWATER variable monthly parameter value flags ***
  # - # CSNO  RTOP  VRS  VNN  RTLI  ***
  1      0      0      0      0      0
END IWAT-PARM1

IWAT-PARM2
  <PLS >      IWATER input info: Part 2      ***
  # - # *** LSUR      SLSUR      NSUR      RETSC
  1      400      0.01      0.1      0.1
END IWAT-PARM2

IWAT-PARM3
  <PLS >      IWATER input info: Part 3      ***
  # - # ***PETMAX      PETMIN
  1      0      0
END IWAT-PARM3

IWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
  # - # *** RETS      SURS
  1      0      0
END IWAT-STATE1

END IMPLND

```



```
END EXT SOURCES

EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
<Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg***  
COPY 501 OUTPUT MEAN 1 1 48.4 WDM 501 FLOW ENGL REPL
END EXT TARGETS

MASS-LINK
<Volume> <-Grp> <-Member-><--Mult--> <Target> <-Grp> <-Member->***  
<Name> <Name> # #<-factor-> <Name> <Name> # #***  
MASS-LINK 15
IMPLND IWATER SURO 0.083333 COPY INPUT MEAN
END MASS-LINK 15

END MASS-LINK

END RUN
```

Mitigated UCI File

```
RUN

GLOBAL
  WWHM4 model simulation
  START      1948 10 01      END      2009 09 30
  RUN INTERP OUTPUT LEVEL    3      0
  RESUME      0 RUN      1
  UNIT SYSTEM      1
END GLOBAL

FILES
<File> <Un#> <-----File Name----->***  

<-ID->
WDM      26  21098.wdm
MESSU    25  Mit21098.MES
        27  Mit21098.L61
        28  Mit21098.L62
        30  POC210981.dat
END FILES

OPN SEQUENCE
  INGRP          INDELT 00:15
    IMPLND      1
    COPY        501
    DISPLAY     1
  END INGRP
END OPN SEQUENCE
DISPLAY
  DISPLAY-INFO1
    # - #-----Title----->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
    1           Basin 1           MAX           1   2   30   9
  END DISPLAY-INFO1
END DISPLAY
COPY
  TIMESERIES
    # - # NPT NMN ***
    1           1   1
  501          1   1
  END TIMESERIES
END COPY
GENER
  OPCODE
    # # OPCD ***
  END OPCODE
  PARM
    # # K ***
  END PARM
END GENER
PERLND
  GEN-INFO
    <PLS ><-----Name----->NBLKS  Unit-systems  Printer ***
    # - #                   User t-series Engl Metr ***
    in   out
  END GEN-INFO
*** Section PWATER***

ACTIVITY
  <PLS > ***** Active Sections *****
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
END ACTIVITY

PRINT-INFO
  <PLS > ***** Print-flags *****
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *****
END PRINT-INFO

PWAT-PARM1
  <PLS > PWATER variable monthly parameter value flags ***
  # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INF C HWT ***
```

```

END PWAT-PARM1

PWAT-PARM2
  <PLS >      PWATER input info: Part 2      ***
  # - # ***FOREST      LZSN      INFILT      LSUR      SLSUR      KVARY      AGWRC
END PWAT-PARM2

PWAT-PARM3
  <PLS >      PWATER input info: Part 3      ***
  # - # ***PETMAX      PETMIN      INFEXP      INFILD      DEEPFR      BASETP      AGWETP
END PWAT-PARM3

PWAT-PARM4
  <PLS >      PWATER input info: Part 4      ***
  # - #      CEPSC      UZSN      NSUR      INTFW      IRC      LZETP  ***
END PWAT-PARM4

PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
  ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
  # - # *** CEPS      SURS      UZS      IFWS      LZS      AGWS      GWVS
END PWAT-STATE1

END PERLND

IMPLND
  GEN-INFO
    <PLS ><-----Name----->  Unit-systems  Printer ***
    # - #                      User  t-series Engl Metr ***
                                in    out
    1      ROADS/FLAT          1      1      1      27      0
END GEN-INFO
*** Section IWATER***

ACTIVITY
  <PLS > ***** Active Sections *****
  # - # ATMP  SNOW  IWAT  SLD  IWG  IQAL  ***
  1      0      0      1      0      0      0
END ACTIVITY

PRINT-INFO
  <ILS > ***** Print-flags ***** PIVL  PYR
  # - # ATMP  SNOW  IWAT  SLD  IWG  IQAL  *****
  1      0      0      4      0      0      0      1      9
END PRINT-INFO

IWAT-PARM1
  <PLS > IWATER variable monthly parameter value flags ***
  # - # CSNO  RTOP  VRS  VNN  RTLI  ***
  1      0      0      0      0      0
END IWAT-PARM1

IWAT-PARM2
  <PLS >      IWATER input info: Part 2      ***
  # - # *** LSUR      SLSUR      NSUR      RETSC
  1      400      0.01      0.1      0.1
END IWAT-PARM2

IWAT-PARM3
  <PLS >      IWATER input info: Part 3      ***
  # - # ***PETMAX      PETMIN
  1      0      0
END IWAT-PARM3

IWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
  # - # *** RETS      SURS
  1      0      0
END IWAT-STATE1

END IMPLND

```



```
END EXT SOURCES

EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
<Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg ***
COPY 1 OUTPUT MEAN 1 1 48.4 WDM 701 FLOW ENGL REPL
COPY 501 OUTPUT MEAN 1 1 48.4 WDM 801 FLOW ENGL REPL
END EXT TARGETS

MASS-LINK
<Volume> <-Grp> <-Member-><--Mult--> <Target> <-Grp> <-Member->***
<Name> <Name> # #<-factor-> <Name> <Name> # #***
MASS-LINK 15
IMPLND IWATER SURO 0.083333 COPY INPUT MEAN
END MASS-LINK 15

END MASS-LINK

END RUN
```

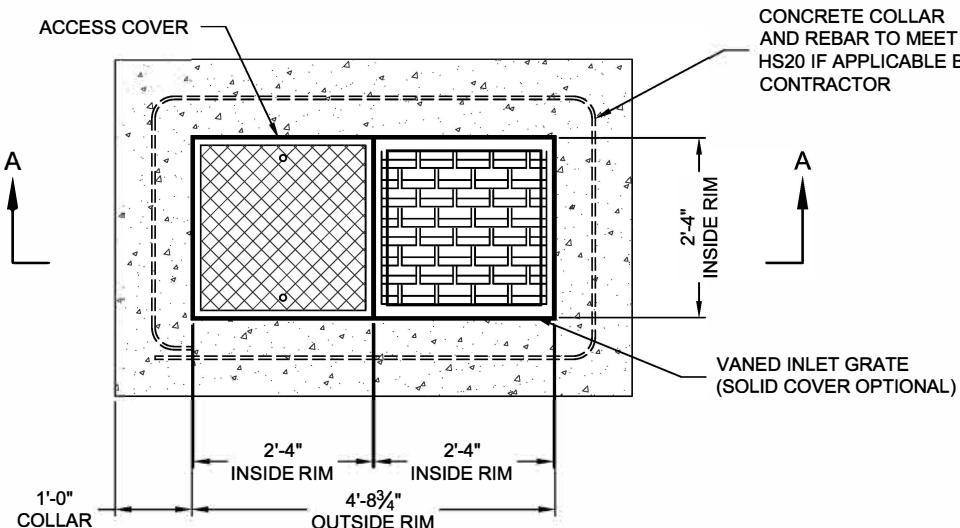
Predeveloped HSPF Message File

Mitigated HSPF Message File

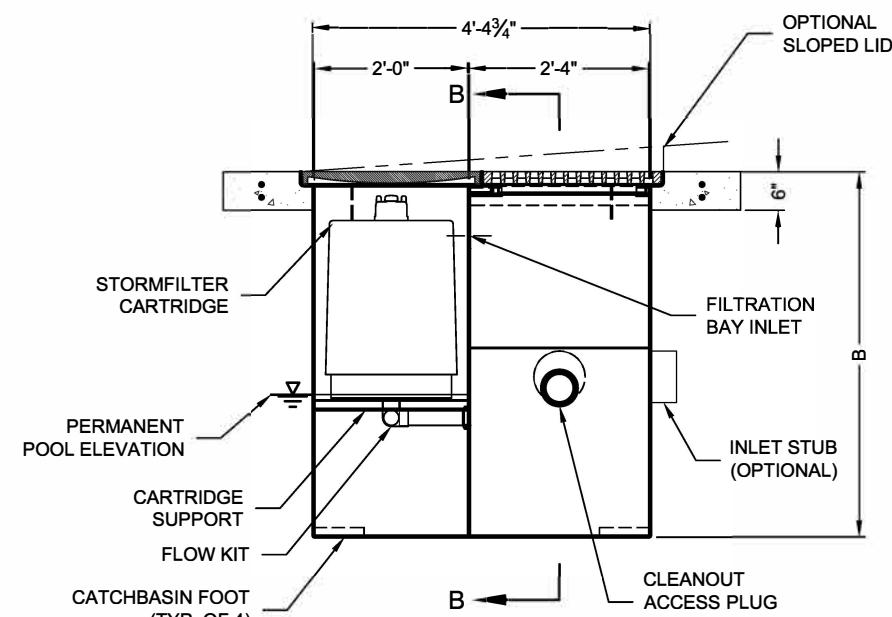
Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.


Clear Creek Solutions, Inc.
6200 Capitol Blvd. Ste F
Olympia, WA. 98501
Toll Free 1(866)943-0304
Local (360)943-0304

www.clearcreeksolutions.com

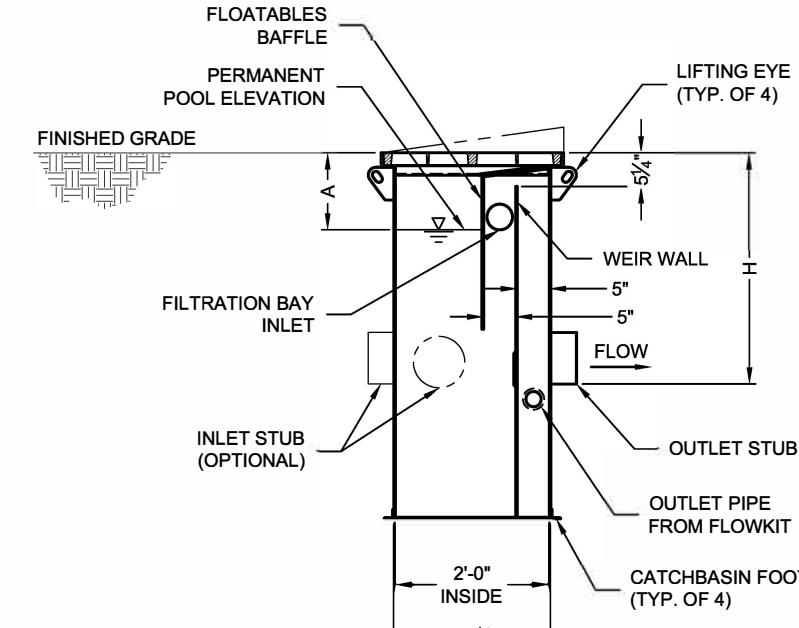

Appendix B – Stormfilter

STORMFILTER CATCHBASIN DESIGN NOTES

STORMFILTER TREATMENT CAPACITY IS A FUNCTION OF THE CARTRIDGE SELECTION AND THE NUMBER OF CARTRIDGES. 1 CARTRIDGE CATCHBASIN HAS A MAXIMUM OF ONE CARTRIDGE. SYSTEM IS SHOWN WITH A 27" CARTRIDGE, AND IS ALSO AVAILABLE WITH AN 18" CARTRIDGE. STORMFILTER CATCHBASIN CONFIGURATIONS ARE AVAILABLE WITH A DRY INLET BAY FOR VECTOR CONTROL. PEAK HYDRAULIC CAPACITY PER TABLE BELOW. IF THE SITE CONDITIONS EXCEED PEAK HYDRAULIC CAPACITY, AN UPSTREAM BYPASS STRUCTURE IS REQUIRED.

PLAN VIEW

SECTION A-A


CARTRIDGE SELECTION		27"	18"	18" DEEP
CARTRIDGE HEIGHT	3.05'	2.3'	3.3'	
MINIMUM HYDRAULIC DROP (H)	2 gpm/ft ²	1 gpm/ft ²	2 gpm/ft ²	
SPECIFIC FLOW RATE (gpm/ft ²)	22.5	11.25	15	
CARTRIDGE FLOW RATE (gpm)	1.0	1.0	1.8	
PEAK HYDRAULIC CAPACITY	1'-0"	1'-0"	2'-0"	
INLET PERMANENT POOL LEVEL (A)	4'-9"	3'-9"	4'-9"	
OVERALL STRUCTURE HEIGHT (B)				

GENERAL NOTES

1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STORMFILTER CATCHBASIN STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH ENGINEERED SOLUTIONS LLC REPRESENTATIVE. www.ContechES.com
3. STORMFILTER CATCHBASIN WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.
4. INLET SHOULD NOT BE LOWER THAN OUTLET. INLET (IF APPLICABLE) AND OUTLET PIPING TO BE SPECIFIED BY ENGINEER AND PROVIDED BY CONTRACTOR.
5. STORMFILTER CATCHBASIN EQUIPPED WITH 4 INCH (APPROXIMATE) LONG STUBS FOR INLET (IF APPLICABLE) AND OUTLET PIPING. STANDARD OUTLET STUB IS 8 INCHES IN DIAMETER. MAXIMUM OUTLET STUB IS 15 INCHES IN DIAMETER. CONNECTION TO COLLECTION PIPING CAN BE MADE USING FLEXIBLE COUPLING BY CONTRACTOR.
6. STEEL STRUCTURE TO BE MANUFACTURED OF 1/4 INCH STEEL PLATE. CASTINGS SHALL MEET AASHTO M306 LOAD RATING. TO MEET HS20 LOAD RATING ON STRUCTURE, A CONCRETE COLLAR IS REQUIRED. WHEN REQUIRED, CONCRETE COLLAR WITH QUANTITY (2) #4 REINFORCING BARS TO BE PROVIDED BY CONTRACTOR.
7. FILTER CARTRIDGES SHALL BE MEDIA-FILLED, PASSIVE, SIPHON ACTUATED, RADIAL FLOW, AND SELF CLEANING. RADIAL MEDIA DEPTH SHALL BE 7-INCHES. FILTER MEDIA CONTACT TIME SHALL BE AT LEAST 37 SECONDS.
8. SPECIFIC FLOW RATE IS EQUAL TO THE FILTER TREATMENT CAPACITY (gpm) DIVIDED BY THE FILTER CONTACT SURFACE AREA (sq ft).

INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CATCHBASIN (LIFTING CLUTCHES PROVIDED).
- C. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF.

SECTION B-B

1-CARTRIDGE CATCHBASIN STORMFILTER DATA		
STRUCTURE ID	CB #6	
WATER QUALITY FLOW RATE (cfs)	0.004	
PEAK FLOW RATE (<1 cfs)	0.046	
RETURN PERIOD OF PEAK FLOW (yrs)	100	
CARTRIDGE FLOW RATE (gpm)	7.5	
MEDIA TYPE (CSF, PERLITE, ZPG, GAC, PHS)	ZPG	
RIM ELEVATION	8.57	
PIPE DATA:	I.E.	DIAMETER
INLET STUB	5.76	6"
OUTLET STUB	5.76	6"
CONFIGURATION	OUTLET	OUTLET
INLET		
SLOPED LID	YES	NO
SOLID COVER	YES	NO
NOTES/SPECIAL REQUIREMENTS:		

Appendix C – Operation and Maintenance

Table V-A.5: Maintenance Standards - Catch Basins

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is performed
General	Trash & Debris	<p>Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%.</p> <p>Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.</p> <p>Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.</p> <p>Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).</p>	<p>No Trash or debris located immediately in front of catch basin or on grate opening.</p> <p>No trash or debris in the catch basin.</p> <p>Inlet and outlet pipes free of trash or debris.</p> <p>No dead animals or vegetation present within the catch basin.</p>
	Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin
	Structure Damage to Frame and/or Top Slab	<p>Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch. (Intent is to make sure no material is running into basin).</p> <p>Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached</p>	<p>Top slab is free of holes and cracks.</p> <p>Frame is sitting flush on the riser rings or top slab and firmly attached.</p>
	Fractures or Cracks in Basin Walls/ Bottom	<p>Maintenance person judges that structure is unsound.</p> <p>Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.</p>	<p>Basin replaced or repaired to design standards.</p> <p>Pipe is regROUTed and secure at basin wall.</p>
	Settlement/ Mis-alignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.
	Vegetation	<p>Vegetation growing across and blocking more than 10% of the basin opening.</p> <p>Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.</p>	<p>No vegetation blocking opening to basin.</p> <p>No vegetation or root growth present.</p>
	Contamination and Pollution	See Table V-A.1: Maintenance Standards - Detention Ponds	No pollution present.
Catch Basin Cover	Cover Not in Place	Cover is missing or only partially in place. Any open catch basin requires maintenance.	Cover/grate is in place, meets design standards, and is secured
	Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. (Intent is keep cover from sealing off access to maintenance.)	Cover can be removed by one maintenance person.
Ladder	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to basin wall, misalignment, rust, cracks, or sharp edges.	Ladder meets design standards and allows maintenance person safe access.
Metal Grates (If Applicable)	Grate opening Unsafe	Grate with opening wider than 7/8 inch.	Grate opening meets design standards.
	Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
	Damaged or Missing.	Grate missing or broken member(s) of the grate.	Grate is in place, meets the design standards, and is installed and aligned with the flow path.

Downspout Checklist

Date Inspected: _____

Frequency	Maintenance Component	Defect	Condition When Maintenance is needed	Results Expected When Maintenance is Performed
A, S	General	General	Gutters, downspouts and their connection points should be inspected for leakage, failure, blockage.	Free-flowing roof water being conveyed.
A	Catch basin/Structure connection	Blockage between downspout and downstream structure connection.	Water is not freely flowing from downspout to downstream connection point/structure. See CB inspection checklist. Do NOT force with air or water the blockage downstream into the infiltration facility, unless the inlet pipe to the infiltration facility has been completely blocked, and the CB or structure is then vacuumed.	Outlet to downstream structure is clear, water freely flowing.

A – Annually – preferably in September

M – Monthly – from November through April

S – After any major storm (1 inch in a 24 hour period)

BW – Bi-weekly

D - Daily

StormFilter Inspection and Maintenance Procedures

Maintenance Guidelines

The primary purpose of the Stormwater Management StormFilter® is to filter and prevent pollutants from entering our waterways. Like any effective filtration system, periodically these pollutants must be removed to restore the StormFilter to its full efficiency and effectiveness.

Maintenance requirements and frequency are dependent on the pollutant load characteristics of each site. Maintenance activities may be required in the event of a chemical spill or due to excessive sediment loading from site erosion or extreme storms. It is a good practice to inspect the system after major storm events.

Maintenance Procedures

Although there are many effective maintenance options, we believe the following procedure to be efficient, using common equipment and existing maintenance protocols. The following two-step procedure is recommended::

1. Inspection

- Inspection of the vault interior to determine the need for maintenance.

2. Maintenance

- Cartridge replacement
- Sediment removal

Inspection and Maintenance Timing

At least one scheduled inspection should take place per year with maintenance following as warranted.

First, an inspection should be done before the winter season. During the inspection the need for maintenance should be determined and, if disposal during maintenance will be required, samples of the accumulated sediments and media should be obtained.

Second, if warranted, a maintenance (replacement of the filter cartridges and removal of accumulated sediments) should be performed during periods of dry weather.

In addition to these two activities, it is important to check the condition of the StormFilter unit after major storms for potential damage caused by high flows and for high sediment accumulation that may be caused by localized erosion in the drainage area. It may be necessary to adjust the inspection/maintenance schedule depending on the actual operating conditions encountered by the system. In general, inspection activities can be conducted at any time, and maintenance should occur, if warranted, during dryer months in late summer to early fall.

Maintenance Frequency

The primary factor for determining frequency of maintenance for the StormFilter is sediment loading.

A properly functioning system will remove solids from water by trapping particulates in the porous structure of the filter media inside the cartridges. The flow through the system will naturally decrease as more and more particulates are trapped. Eventually the flow through the cartridges will be low enough to require replacement. It may be possible to extend the usable span of the cartridges by removing sediment from upstream trapping devices on a routine as-needed basis, in order to prevent material from being re-suspended and discharged to the StormFilter treatment system.

The average maintenance lifecycle is approximately 1-5 years. Site conditions greatly influence maintenance requirements. StormFilter units located in areas with erosion or active construction may need to be inspected and maintained more often than those with fully stabilized surface conditions.

Regulatory requirements or a chemical spill can shift maintenance timing as well. The maintenance frequency may be adjusted as additional monitoring information becomes available during the inspection program. Areas that develop known problems should be inspected more frequently than areas that demonstrate no problems, particularly after major storms. Ultimately, inspection and maintenance activities should be scheduled based on the historic records and characteristics of an individual StormFilter system or site. It is recommended that the site owner develop a database to properly manage StormFilter inspection and maintenance programs..

Inspection Procedures

The primary goal of an inspection is to assess the condition of the cartridges relative to the level of visual sediment loading as it relates to decreased treatment capacity. It may be desirable to conduct this inspection during a storm to observe the relative flow through the filter cartridges. If the submerged cartridges are severely plugged, then typically large amounts of sediments will be present and very little flow will be discharged from the drainage pipes. If this is the case, then maintenance is warranted and the cartridges need to be replaced.

Warning: In the case of a spill, the worker should abort inspection activities until the proper guidance is obtained. Notify the local hazard control agency and Contech Engineered Solutions immediately.

To conduct an inspection:

Important: Inspection should be performed by a person who is familiar with the operation and configuration of the StormFilter treatment unit and the unit's role, relative to detention or retention facilities onsite.

1. If applicable, set up safety equipment to protect and notify surrounding vehicle and pedestrian traffic.
2. Visually inspect the external condition of the unit and take notes concerning defects/problems.
3. Open the access portals to the vault and allow the system vent.
4. Without entering the vault, visually inspect the inside of the unit, and note accumulations of liquids and solids.
5. Be sure to record the level of sediment build-up on the floor of the vault, in the forebay, and on top of the cartridges. If flow is occurring, note the flow of water per drainage pipe. Record all observations. Digital pictures are valuable for historical documentation.
6. Close and fasten the access portals.
7. Remove safety equipment.
8. If appropriate, make notes about the local drainage area relative to ongoing construction, erosion problems, or high loading of other materials to the system.
9. Discuss conditions that suggest maintenance and make decision as to whether or not maintenance is needed.

Maintenance Decision Tree

The need for maintenance is typically based on results of the inspection. The following Maintenance Decision Tree should be used as a general guide. (Other factors, such as Regulatory Requirements, may need to be considered).

Please note Stormwater Management StormFilter devices installed downstream of, or integrated within, a stormwater storage facility typically have different operational parameters (i.e. draindown time). In these cases, the inspector must understand the relationship between the retention/detention facility and the treatment system by evaluating site specific civil engineering plans, or contacting the engineer of record, and make adjustments to the below guidance as necessary. Sediment deposition depths and patterns within the StormFilter are likely to be quite different compared to systems without upstream storage and therefore shouldn't be used exclusively to evaluate a need for maintenance.

1. Sediment loading on the vault floor.
 - a. If $>4"$ of accumulated sediment, maintenance is required.
2. Sediment loading on top of the cartridge.
 - a. If $>1/4"$ of accumulation, maintenance is required.
3. Submerged cartridges.
 - a. If $>4"$ of static water above cartridge bottom for more than 24 hours after end of rain event, maintenance is required. (Catch basins have standing water in the cartridge bay.)
4. Plugged media.
 - a. While not required in all cases, inspection of the media within the cartridge may provide valuable additional information.
 - b. If pore space between media granules is absent, maintenance is required.
5. Bypass condition.
 - a. If inspection is conducted during an average rain fall event and StormFilter remains in bypass condition (water over the internal outlet baffle wall or submerged cartridges), maintenance is required.
6. Hazardous material release.
 - a. If hazardous material release (automotive fluids or other) is reported, maintenance is required.
7. Pronounced scum line.
 - a. If pronounced scum line (say $\geq 1/4"$ thick) is present above top cap, maintenance is required.

Maintenance

Depending on the configuration of the particular system, maintenance personnel will be required to enter the vault to perform the maintenance.

Important: If vault entry is required, OSHA rules for confined space entry must be followed.

Filter cartridge replacement should occur during dry weather. It may be necessary to plug the filter inlet pipe if base flows is occurring.

Replacement cartridges can be delivered to the site or customers facility. Information concerning how to obtain the replacement cartridges is available from Contech Engineered Solutions.

Warning: In the case of a spill, the maintenance personnel should abort maintenance activities until the proper guidance is obtained. Notify the local hazard control agency and Contech Engineered Solutions immediately.

To conduct cartridge replacement and sediment removal maintenance:

1. If applicable, set up safety equipment to protect maintenance personnel and pedestrians from site hazards.
2. Visually inspect the external condition of the unit and take notes concerning defects/problems.
3. Open the doors (access portals) to the vault and allow the system to vent.
4. Without entering the vault, give the inside of the unit, including components, a general condition inspection.
5. Make notes about the external and internal condition of the vault. Give particular attention to recording the level of sediment build-up on the floor of the vault, in the forebay, and on top of the internal components.
6. Using appropriate equipment offload the replacement cartridges (up to 150 lbs. each) and set aside.
7. Remove used cartridges from the vault using one of the following methods:

Method 1:

- A. This activity will require that maintenance personnel enter the vault to remove the cartridges from the under drain manifold and place them under the vault opening for lifting (removal). Disconnect each filter cartridge from the underdrain connector by rotating counterclockwise 1/4 of a turn. Roll the loose cartridge, on edge, to a convenient spot beneath the vault access.

Using appropriate hoisting equipment, attach a cable from the boom, crane, or tripod to the loose cartridge. Contact Contech Engineered Solutions for suggested attachment devices.

- B. Remove the used cartridges (up to 250 lbs. each) from the vault.

Important: Care must be used to avoid damaging the cartridges during removal and installation. The cost of repairing components damaged during maintenance will be the responsibility of the owner.

- C. Set the used cartridge aside or load onto the hauling truck.
- D. Continue steps a through c until all cartridges have been removed.

Method 2:

- A. This activity will require that maintenance personnel enter the vault to remove the cartridges from the under drain manifold and place them under the vault opening for lifting (removal). Disconnect each filter cartridge from the underdrain connector by rotating counterclockwise 1/4 of a turn. Roll the loose cartridge, on edge, to a convenient spot beneath the vault access.
- B. Unscrew the cartridge cap.
- C. Remove the cartridge hood and float.
- D. At location under structure access, tip the cartridge on its side.
- E. Empty the cartridge onto the vault floor. Reassemble the empty cartridge.
- F. Set the empty, used cartridge aside or load onto the hauling truck.
- G. Continue steps a through e until all cartridges have been removed.

8. Remove accumulated sediment from the floor of the vault and from the forebay. This can most effectively be accomplished by use of a vacuum truck.
9. Once the sediments are removed, assess the condition of the vault and the condition of the connectors.
10. Using the vacuum truck boom, crane, or tripod, lower and install the new cartridges. Once again, take care not to damage connections.
11. Close and fasten the door.
12. Remove safety equipment.
13. Finally, dispose of the accumulated materials in accordance with applicable regulations. Make arrangements to return the used **empty** cartridges to Contech Engineered Solutions.

Related Maintenance Activities - Performed on an as-needed basis

StormFilter units are often just one of many structures in a more comprehensive stormwater drainage and treatment system.

In order for maintenance of the StormFilter to be successful, it is imperative that all other components be properly maintained. The maintenance/repair of upstream facilities should be carried out prior to StormFilter maintenance activities.

In addition to considering upstream facilities, it is also important to correct any problems identified in the drainage area. Drainage area concerns may include: erosion problems, heavy oil loading, and discharges of inappropriate materials.

Material Disposal

The accumulated sediment found in stormwater treatment and conveyance systems must be handled and disposed of in accordance with regulatory protocols. It is possible for sediments to contain measurable concentrations of heavy metals and organic chemicals (such as pesticides and petroleum products). Areas with the greatest potential for high pollutant loading include industrial areas and heavily traveled roads.

Sediments and water must be disposed of in accordance with all applicable waste disposal regulations. When scheduling maintenance, consideration must be made for the disposal of solid and liquid wastes. This typically requires coordination with a local landfill for solid waste disposal. For liquid waste disposal a number of options are available including a municipal vacuum truck decant facility, local waste water treatment plant or on-site treatment and discharge.

StormFilter Maintenance Report

Date: _____ Personnel: _____

Location: _____ System Size: _____

System Type: Vault Cast-In-Place Linear Catch Basin Manhole Other: _____

List Safety Procedures and Equipment Used: _____

System Observations

Months in Service: _____

Oil in Forebay (if present): Yes No

Sediment Depth in Forebay (if present): _____

Sediment Depth on Vault Floor: _____

Sediment Depth on Cartridge Top(s): _____

Structural Damage: _____

Drainage Area Report

Excessive Oil Loading: Yes No Source: _____

Sediment Accumulation on Pavement: Yes No Source: _____

Erosion of Landscaped Areas: Yes No Source: _____

StormFilter Cartridge Replacement Maintenance Activities

Remove Trash and Debris: Yes No Details: _____

Replace Cartridges: Yes No Details: _____

Sediment Removed: Yes No Details: _____

Quantity of Sediment Removed (estimate?): _____

Minor Structural Repairs: Yes No Details: _____

Residuals (debris, sediment) Disposal Methods: _____

Notes:

© 2020 CONTECH ENGINEERED SOLUTIONS LLC, A QUIKRETE COMPANY

800-338-1122

www.ContechES.com

All Rights Reserved. Printed in the USA.

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater and earth stabilization products. For information on other Contech division offerings, visit www.ContechES.com or call 800.338.1122.

Support

- Drawings and specifications are available at www.conteches.com.
- Site-specific design support is available from our engineers.

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

800.338.1122

www.conteches.com

Appendix D – Source Control BMP's

S410 BMPs for Correcting Illicit Discharges to Storm Drains

Description of Pollutant

Sources: Illicit discharges are unpermitted sanitary or process wastewater discharges to a storm sewer or to surface water, rather than to a sanitary sewer, industrial process wastewater, or other appropriate treatment. They can also include swimming pool water, filter backwash, cleaning solutions/washwaters, cooling water, etc. Experience has shown that illicit discharges are common, particularly in older buildings.

Pollutant Control

Approach: Identify and eliminate unpermitted discharges or obtain an NPDES permit, where necessary, particularly at industrial and commercial facilities.

Applicable Operational BMPs:

- For all real properties, responsible parties must examine their plumbing systems to identify any potential illicit discharges. Review site plans, engineering drawings, or other sources of information for the plumbing systems on the property.
- If an illicit discharge is suspected, trace the source using an appropriate method such as visual reconnaissance, smoke test, flow test, dye test with a nontoxic dye, or closed circuit television (CCTV) inspection. These tests are to be performed by qualified personnel such as a plumbing contractor. Note: Contact Ecology prior to performing a dye test which may result in a discharge to a receiving water.
- If illicit connections are found, permanently plug or disconnect the connections.
- Eliminate prohibited discharges to storm sewer, ground water, or surface water.
- Convey unpermitted discharges to a sanitary sewer if allowed by the local sewer authority, or to other approved treatment.
- Obtain all necessary permits for altering or repairing side sewers and plumbing fixtures. Restrictions on certain types of discharges, particularly industrial process waters, may require pretreatment of discharges before they enter the sanitary sewer. It is the responsibility of the property owner or business operator to obtain the necessary permits and to replace the connection.
- Obtain appropriate state and local permits for these discharges.

Recommended Additional Operational BMPs:

At commercial and industrial facilities, conduct a survey of wastewater discharge connections to storm drains and to surface water as follows:

- Conduct a field survey of buildings, particularly older buildings, and other industrial areas to locate storm drains from buildings and paved surfaces. Note where these discharge.
- During non-stormwater conditions, inspect each storm drain for non-stormwater discharges. Record the locations of all non-stormwater discharges. Include all permitted discharges.
- If useful, prepare a map of each area. Show on the map the known location of storm sewers, sanitary sewers, and permitted and unpermitted discharges. Aerial photos may be useful. Check records such as piping schematics to identify known side sewer connections and show these on the map. Consider using smoke, dye, or chemical analysis tests to detect connections between two conveyance systems (e.g., process water and stormwater). If desirable, conduct TV inspections of the storm drains and record the footage on videotape.
- Compare the observed locations of connections with the information on the map and revise the map accordingly. Note suspect connections that are inconsistent with the field survey.
- Identify all connections to storm sewers or to surface water and take the actions specified above as applicable BMPs.

S453 BMPs for Formation of a Pollution Prevention Team

The pollution prevention team should be responsible for implementing and maintaining all BMPs and treatment for the site. This team should be able to address any corrective actions needed on site to mitigate potential stormwater contamination. The team members should:

- Consist of those people who are familiar with the facility and its operations.
- Possess the knowledge and skills to assess conditions and activities that could impact stormwater quality at your facility, and who can evaluate the effectiveness of control measures.
- Assign pollution prevention team staff to be on duty on a daily basis to cover applicable permittee facilities when those facilities are in operation.
- Have the primary responsibility for developing and overseeing facility activities necessary to comply with stormwater requirements.
- Have access to all applicable permit, monitoring, SWPPP, and other records.
- Be trained in the operation, maintenance and inspections of all BMPs and reporting procedures.
- Establish responsibilities for inspections, operation, maintenance, and emergencies.
- Regularly meet to review overall facility operations and BMP effectiveness.

S454 BMPs for Preventive Maintenance / Good Housekeeping

Preventative maintenance and good housekeeping practices reduce the potential for stormwater to come into contact with pollutants and can reduce maintenance intervals for the drainage system and sewer system.

Applicable BMPs:

- Prevent the discharge of unpermitted liquid or solid wastes, process wastewater, and sewage to ground or surface water, or to storm drains that discharge to surface water, or to the ground. Conduct all oily parts cleaning, steam cleaning, or pressure washing of equipment or containers inside a building, or on an impervious contained area, such as a concrete pad. Direct contaminated stormwater from such an area to a sanitary sewer where allowed by local sewer authority, or to other approved treatment.
- Promptly contain and clean up solid and liquid pollutant leaks and spills including oils, solvents, fuels, and dust from manufacturing operations on an exposed soil, vegetation, or paved area.
- If a contaminated surface must be pressure washed, collect the resulting washwater for proper disposal (usually involves plugging storm drains, or otherwise preventing discharge and pumping or vactoring up washwater, for discharge to sanitary sewer or for vactor truck transport to a waste water treatment plant for disposal).
- Do not hose down pollutants from any area to the ground, storm drains, conveyance ditches, or receiving water. Convey pollutants before discharge to a treatment system approved by the local jurisdiction.
- Sweep all appropriate surfaces with vacuum sweepers quarterly, or more frequently as needed, for the collection and disposal of dust and debris that could contaminate stormwater. Use mechanical sweepers, and manual sweeping as necessary to access areas that a vacuum sweeper can't reach to ensure that all surface contaminants are routinely removed.
- Do not pave over contaminated soil unless it has been determined that ground water has not been and will not be contaminated by the soil. Call Ecology for assistance.
- Construct impervious areas that are compatible with the materials handled. Portland cement concrete, asphalt, or equivalent material may be considered.
- Use drip pans to collect leaks and spills from industrial/commercial equipment such as cranes at ship/boat building and repair facilities, log stackers, industrial parts, trucks and other vehicles stored outside.
- At industrial and commercial facilities, drain oil and fuel filters before disposal. Discard empty oil and fuel filters, oily rags, and other oily solid waste into appropriately closed and properly labeled containers, and in compliance with the Uniform Fire Code or International Building Code.
- For the storage of liquids use containers, such as steel and plastic drums, that are rigid and

durable, corrosion resistant to the weather and fluid content, non-absorbent, water tight, rodent-proof, and equipped with a close fitting cover.

- For the temporary storage of solid wastes contaminated with liquids or other potential polluted materials use dumpsters, garbage cans, drums, and comparable containers, which are durable, corrosion resistant, non-absorbent, non-leaking, and equipped with either a solid cover or screen cover to prevent littering. If covered with a screen, the container must be stored under a roof or other form of adequate cover.
- Where exposed to stormwater, use containers, piping, tubing, pumps, fittings, and valves that are appropriate for their intended use and for the contained liquid.
- Clean oils, debris, sludge, etc. from all stormwater facilities regularly, including catch basins, settling/detention basins, oil/water separators, boomed areas, and conveyance systems to prevent the contamination of stormwater. Refer to [Ecology Requirements for Generators of Dangerous Wastes](#) in [I-2.15 Other Requirements](#) for references to assist in handling potentially dangerous waste.
- Promptly repair or replace all substantially cracked or otherwise damaged paved secondary containment, high-intensity parking, and any other drainage areas, subjected to pollutant material leaks or spills. Promptly repair or replace all leaking connections, pipes, hoses, valves, etc., which can contaminate stormwater.
- Do not connect floor drains in potential pollutant source areas to storm drains, surface water, or to the ground.

Recommended BMPs:

- Where feasible, store potential stormwater pollutant materials inside a building or under a cover and/or containment.
- Minimize use of toxic cleaning solvents, such as chlorinated solvents, and other toxic chemicals.
- Use environmentally safe raw materials, products, additives, etc. such as substitutes for zinc used in rubber production.
- Recycle waste materials such as solvents, coolants, oils, degreasers, and batteries to the maximum extent feasible. Contact Ecology's *Hazardous Waste & Toxics Reduction Program* at <https://ecology.wa.gov/About-us/Get-to-know-us/Our-Programs/Hazardous-Waste-Toxics-Reduction> for recommendations on recycling or disposal of vehicle waste liquids and other waste materials.
- Empty drip pans immediately after a spill or leak is collected in an uncovered area.
- Stencil warning signs at stormwater catch basins and drains, e.g., "Dump no waste – Drains to waterbody".
- Use solid absorbents, e.g., clay and peat absorbents and rags for cleanup of liquid spills/leaks, where practicable.
- Promptly repair/replace/reseal damaged paved areas at industrial facilities.

- Recycle materials, such as oils, solvents, and wood waste, to the maximum extent practicable.

Note: Evidence of stormwater contamination by oils and grease can include the presence of visible sheen, color, or turbidity in the runoff, or present or historical operational problems at the facility. Operators can use simple pH tests, for example with litmus or pH paper. These tests can screen for high or low pH levels (anything outside a 6.5-8.5 range) due to contamination in stormwater.

S455 BMPs for Spill Prevention and Cleanup

Description of Pollutant Sources: Spills and leaks can damage public infrastructure, interfere with sewage treatment, and cause a threat to human health or the environment. Spills are often preventable if appropriate chemical and waste handling techniques are practiced effectively and the spill response plan is immediately implemented. Additional spill control requirements may be required based on the specific activity occurring on site.

Applicable BMPs:

Spill Prevention

- Clearly label or mark all containers that contain potential pollutants.
- Store and transport liquid materials in appropriate containers with tight-fitting lids.
- Place drip pans underneath all containers, fittings, valves, and where materials are likely to spill or leak.
- Use tarpaulins, ground cloths, or drip pans in areas where materials are mixed, carried, and applied to capture any spilled materials.
- Train employees on the safe techniques for handling materials used on the site and to check for leaks and spills.

Spill Plan

- Develop and implement a spill plan and update it annually or whenever there is a change in activities or staff responsible for spill cleanup. Post a written summary of the plan at areas with a high potential for spills, such as loading docks, product storage areas, waste storage areas, and near a phone. The spill plan may need to be posted at multiple locations. Describe the facility, including the owner's name, address, and telephone number; the nature of the facility activity; and the general types of chemicals used at the facility.
- Designate spill response employees to be on-site during business activities. Provide a current list of the names and telephone numbers (home and office) of designated spill response employees who are responsible for implementing the spill plan.
- Provide a site plan showing the locations of storage areas for chemicals, inlets/catch basins, spill kits and other relevant infrastructure or materials information.
- Describe the emergency cleanup and disposal procedures. Note the location of all spill kits in

the spill plan.

- List the names and telephone numbers of public agencies to contact in the event of a spill.

Spill Cleanup Kits

- Store all cleanup kits near areas with a high potential for spills so that they are easily accessible in the event of a spill. The contents of the spill kit must be appropriate to the types and quantities of materials stored or otherwise used at the facility, and refilled when the materials are used. Spill kits must be located within 25 feet of all fueling/fuel transfer areas, including on-board mobile fuel trucks.

Note: Ecology recommends that the kit(s) include salvage drums or containers, such as high density polyethylene, polypropylene or polyethylene sheet-lined steel; polyethylene or equivalent disposal bags; an emergency response guidebook; safety gloves/clothes/equipment; shovels or other soil removal equipment; and oil containment booms and absorbent pads; all stored in an impervious container.

Spill Cleanup and Proper Disposal of Waste

- Stop, contain, and clean up all spills immediately upon discovery.
- Implement the spill plan immediately.
- Contact the designated spill response employees.
- Block off and seal nearby inlets/catch basins to prevent materials from entering the drainage system or combined sewer.
- Use the appropriate material to clean up the spill.
- Do not use emulsifiers or dispersants such as liquid detergents or degreasers unless disposed of properly. Emulsifiers and dispersants are not allowed to be used on surface water, or in a place where they may enter storm drains, surface waters, treatments systems, or sanitary sewers.
- Immediately notify Ecology and the local jurisdiction if a spill has reached or may reach a sanitary or storm sewer, ground water, or surface water. Notification must comply with state and federal spill reporting requirements.
- Do not wash absorbent material into interior floor drains or inlets/catch basins.
- Place used spill control materials in appropriate containers and dispose of according to regulations.

S456 BMPs for Employee Training

Train all employees that work in pollutant source areas about the following topics:

- Identifying Pollution Prevention Team Members.
- Identifying pollutant sources.

- Understanding pollutant control measures.
- Spill prevention and response.
- Emergency response procedures.
- Handling practices that are environmentally acceptable. Particularly those related to vehicle/equipment liquids such as fuels, and vehicle/equipment cleaning.

Additional specialized training may be needed for staff who will be responsible for handling hazardous materials.

S457 BMPs for Inspections

Qualified personnel shall conduct inspections monthly. Make and maintain a record of each inspection on-site. The following requirements apply to inspections:

- Be conducted by someone familiar with the facility's site, operations, and BMPs.
- Verify the accuracy of the pollutant source descriptions in the SWPPP.
- Assess all BMPs that have been implemented for effectiveness and needed maintenance and locate areas where additional BMPs are needed.
- Reflect current conditions on the site.
- Include written observations of the presence of floating materials, suspended solids, oil and grease, discoloration, turbidity and odor in the stormwater discharges; in outside vehicle maintenance/repair; and liquid handling, and storage areas. In areas where acid or alkaline materials are handled or stored use a simple litmus or pH paper to identify those types of stormwater contaminants where needed.
- Eliminate or obtain a permit for unpermitted non-stormwater discharges to storm drains or receiving waters, such as process wastewater and vehicle/equipment washwater.
- Identify actions to address inspection deficiencies.

S458 BMPs for Record Keeping

See the applicable permit for specific record-keeping requirements and retention schedules for the following reports. At a minimum, retain the following reports for five years:

- Inspection reports which should include:
 - Time and date of the inspection
 - Locations inspected
 - Statement on status of compliance with the permit
 - Summary report of any remediation activities required
 - Name, title, and signature of person conducting the inspection

- Reports on spills of oil or hazardous substances in greater than Reportable Quantities (Code of Federal Regulations Title 40 Parts 302.4 and 117). Report spills of the following: antifreeze, oil, gasoline, or diesel fuel, that cause:
 - A violation of the State of Washington's Water Quality Standards.
 - A film or sheen upon or discoloration of the waters of the State or adjoining shorelines.
 - A sludge or emulsion to be deposited beneath the surface of the water or upon adjoining shorelines.

To report a spill or to determine if a spill is a substance of a Reportable Quantity, call the Ecology regional office and ask for an oil spill operations or a dangerous waste specialist:

- Northwest Region (425)649-7000
- Southwest Region (360)407-6300
- Eastern Region (509)329-3400
- Central Region (509) 575-2490

In addition, call the Washington Emergency Management Division at 1-800-258-5990 or 1-800-OILS-911 AND the National Response Center at 1-800-424-8802.

Also, refer to *Focus on Emergency Spill Response* ([Ecology, 2009](#)).

The following is additional recommended record keeping:

Maintain records of all related pollutant control and pollutant generating activities such as training, materials purchased, material use and disposal, maintenance performed, etc.

S417 BMPs for Maintenance of Stormwater Drainage and Treatment Systems

Description of Pollutant

Sources: Facilities include roadside catch basins on arterials and within residential areas, conveyance systems, detention facilities such as ponds and vaults, oil/water separators, biofilters, settling basins, infiltration systems, and all other types of stormwater treatment systems presented in [Volume V](#). Oil and grease, hydrocarbons, debris, heavy metals, sediments and contaminated water are found in catch basins, oil and water separators, settling basins, etc.

Pollutant Control Approach: Provide maintenance and cleaning of debris, sediments, and other pollutants from stormwater collection, conveyance, and treatment systems to maintain proper operation.

Applicable Operational BMPs:

Maintain stormwater treatment facilities per the operations and maintenance (O&M) procedures presented in [Appendix V-A: BMP Maintenance Tables](#) in addition to the following BMPs:

- Inspect and clean treatment BMPs, conveyance systems, and catch basins as needed, and determine necessary O&M improvements.
- Promptly repair any deterioration threatening the structural integrity of stormwater facilities. These include replacement of clean-out gates, catch basin lids, and rock in emergency spillways.
- Ensure adequacy of storm sewer capacities and prevent heavy sediment discharges to the sewer system.
- Regularly remove debris and sludge from BMPs used for peak-rate control, treatment, etc. and discharge to a sanitary sewer if approved by the sewer authority, or truck to an appropriate local or state government approved disposal site.
- Clean catch basins when the depth of deposits reaches 60 percent of the sump depth as measured from the bottom of basin to the invert of the lowest pipe into or out of the basin. However, in no case should there be less than six inches clearance from the debris surface to the invert of the lowest pipe. Some catch basins (for example, WSDOT's *Catch Basin Type 1L* ([WSDOT, 2011](#))) may have as little as 12 inches sediment storage below the invert. These catch basins need frequent inspection and cleaning to prevent scouring. Where these catch basins are part of a stormwater collection and treatment system, the system owner/operator may choose to concentrate maintenance efforts on downstream control devices as part of a systems approach.
- Properly dispose of all solids, polluted material, and stagnant water collected through system cleaning. Do not decant water back into the drainage system from eductor trucks or vacuum equipment since there may be residual contaminants in the cleaning equipment. Do not jet material downstream into the public drainage system.
- Clean woody debris in a catch basin as frequently as needed to ensure proper operation of the catch basin.
- Post warning signs; "Dump No Waste - Drains to Ground Water," "Streams," "Lakes," or emboss on or adjacent to all storm drain inlets where possible.
- Disposal of sediments and liquids from the catch basins must comply with [Appendix IV-B: Management of Street Waste Solids and Liquids](#).

S411 BMPs for Landscaping and Lawn / Vegetation Management

Description of Pollutant Sources: Landscaping can include grading, soil transfer, vegetation planting, and vegetation removal. Examples include weed control on golf course lawns, access roads, and utility corridors and during landscaping; and residential lawn/plant care. Proper management of vegetation can minimize excess nutrients and pesticides.

Pollutant Control Approach: Maintain appropriate vegetation to control erosion and the discharge of stormwater pollutants. Prevent debris contamination of stormwater. Where practicable, grow plant species appropriate for the site, or adjust the soil properties of the site to grow desired plant species.

Applicable BMPs:

- Install engineered soil/landscape systems to improve the infiltration and regulation of stormwater in landscaped areas.
- Select the right plants for the planting location based on proposed use, available maintenance, soil conditions, sun exposure, water availability, height, sight factors, and space available.
- Ensure that plants selected for planting are not on the noxious weed list. For example, butterfly bush often gets planted as an ornamental but is actually on the noxious weed list.

The Washington State Noxious Weed List can be found at the following webpage:

<https://www.nwcb.wa.gov/printable-noxious-weed-list>

- Do not dispose of collected vegetation into waterways or storm sewer systems.
- Do not blow vegetation or other debris into the drainage system.
- Dispose of collected vegetation such as grass clippings, leaves, sticks by composting or recycling.
- Remove, bag, and dispose of class A & B noxious weeds in the garbage immediately.
- Do not compost noxious weeds as it may lead to spreading through seed or fragment if the composting process is not hot enough.
- Use manual and/or mechanical methods of vegetation removal (pincer-type weeding tools, flame weeders, or hot water weeders as appropriate) rather than applying herbicides, where practical.
- Use at least an eight-inch "topsoil" layer with at least 8 percent organic matter to provide a sufficient vegetation-growing medium.
 - Organic matter is the least water-soluble form of nutrients that can be added to the soil. Composted organic matter generally releases only between 2 and 10 percent of its total nitrogen annually, and this release corresponds closely to the plant growth cycle. Return natural plant debris and mulch to the soil, to continue recycling nutrients indefinitely.
- Select the appropriate turfgrass mixture for the climate and soil type.
 - Certain tall fescues and rye grasses resist insect attack because the symbiotic endophytic fungi found naturally in their tissues repel or kill common leaf and stem-eating lawn insects.

- The fungus causes no known adverse effects to the host plant or to humans.
- Tall fescues and rye grasses do not repel root-feeding lawn pests such as Crane Fly larvae.
- Tall fescues and rye grasses are toxic to ruminants such as cattle and sheep
- Endophytic grasses are commercially available; use them in areas such as parks or golf courses where grazing does not occur.
- Local agricultural or gardening resources such as Washington State University Extension office can offer advice on which types of grass are best suited to the area and soil type.
- Use the following seeding and planting BMPs, or equivalent BMPs, to obtain information on grass mixtures, temporary and permanent seeding procedures, maintenance of a recently planted area, and fertilizer application rates: [BMP C120: Temporary and Permanent Seeding](#), [BMP C121: Mulching](#), [BMP C123: Plastic Covering](#), and [BMP C124: Sodding](#).
- Adjusting the soil properties of the subject site can assist in selection of desired plant species. Consult a soil restoration specialist for site-specific conditions.

Recommended Additional BMPs:

- Conduct mulch-mowing whenever practicable.
- Use native plants in landscaping. Native plants do not require extensive fertilizer or pesticide applications. Native plants may also require less watering.
- Use mulch or other erosion control measures on soils exposed for more than one week during the dry season (May 1 to September 30) or two days during the rainy season (October 1 to April 30).
- Till a topsoil mix or composted organic material into the soil to create a well-mixed transition layer that encourages deeper root systems and drought-resistant plants.
- Apply an annual topdressing application of 3/8" compost. Amending existing landscapes and turf systems by increasing the percent organic matter and depth of topsoil can:
 - Substantially improve the permeability of the soil.
 - Increase the disease and drought resistance of the vegetation.
 - Reduces the demand for fertilizers and pesticides.
- Disinfect gardening tools after pruning diseased plants to prevent the spread of disease.
- Prune trees and shrubs in a manner appropriate for each species.
- If specific plants have a high mortality rate, assess the cause and replace with another more appropriate species.
- When working around and below mature trees, follow the most current American National Standards Institute (ANSI) ANSI A300 standards (see

http://www.tcia.org/TCIA/BUSINESS/ANSI_A300_Standards/TCIA/BUSINESS/A300_Standards/A300_Standards.aspx?hkey=202ff566-4364-4686-b7c1-2a365af59669 and International Society of Arboriculture BMPs to the extent practicable (e.g., take care to minimize any damage to tree roots and avoid compaction of soil).

- Monitor tree support systems (stakes, guys, etc.).
 - Repair and adjust as needed to provide support and prevent tree damage.
 - Remove tree supports after one growing season or maximum of 1 year.
 - Backfill stake holes after removal.
- When continued, regular pruning (more than one time during the growing season) is required to maintain visual sight lines for safety or clearance along a walk or drive, consider relocating the plant to a more appropriate location.
- Make reasonable attempts to remove and dispose of class C noxious weeds.
- Re-seed bare turf areas until the vegetation fully covers the ground surface.
- Watch for and respond to new occurrences of especially aggressive weeds such as Himalayan blackberry, Japanese knotweed, morning glory, English ivy, and reed canary grass to avoid invasions.
- Plant and protect trees per [BMP T5.16: Tree Retention and Tree Planting](#).
- Aerate lawns regularly in areas of heavy use where the soil tends to become compacted. Conduct aeration while the grasses in the lawn are growing most vigorously. Remove layers of thatch greater than $\frac{3}{4}$ -inch deep.
- Set the mowing height at the highest acceptable level and mow at times and intervals designed to minimize stress on the turf. Generally mowing only 1/3 of the grass blade height will prevent stressing the turf.
 - Mowing is a stress-creating activity for turfgrass.
 - Grass decreases its productivity when mowed too short and there is less growth of roots and rhizomes. The turf becomes less tolerant of environmental stresses, more disease prone and more reliant on outside means such as pesticides, fertilizers, and irrigation to remain healthy.

Additional BMP Information:

- King County's *Best Management Practices for Golf Course Development and Operation* ([King County, 1993](#)) has additional BMPs for Turfgrass Maintenance and Operation.
- King County, Seattle Public Utilities, and the Saving Water Partnership have created the following natural lawn and garden care resources that include guidance on building healthy soil with compost and mulch, selecting appropriate plants, watering, using alternatives to pesticides, and implementing natural lawn care techniques.

- *Natural Yard Care - Five steps to make your piece of the planet a healthier place to live* ([King County and SPU, 2008](#))
- *The Natural Lawn & Garden Series: Smart Watering* ([Saving Water Partnership, 2006](#))
- *Natural Lawn Care for Western Washington* ([Saving Water Partnership, 2007](#))
- *The Natural Lawn & Garden Series: Growing Healthy Soil; Choosing the Right Plants; and Natural Pest, Weed and Disease Control* ([Saving Water Partnership, 2012](#))
- The International Society of Arboriculture (ISA) is a group that promotes the professional practice of arboriculture and fosters a greater worldwide awareness of the benefits of trees through research, technology, and education. ISA standards used for managing trees, shrubs, and other woody plants are the American National Standards Institute (ANSI) A300 standards. The ANSI A300 standards are voluntary industry consensus standards developed by the Tree Care Industry Association (TCIA) and written by the Accredited Standards Committee (ASC). The ANSI standards can be found on the ISA website: www.isa-arbor.com/education/publications/index.aspx
- Washington State University's *Gardening in Washington State* website at <http://garden-ing.wsu.edu> contains Washington State specific information about vegetation management based on the type of landscape.
- See the *Pacific Northwest Plant Disease Management Handbook* ([Pscheidt and Ocamb, 2016](#)) for information on disease recognition and for additional resources.

S450 BMPs for Irrigation

Description of Pollutant Sources: Irrigation consists of discharges from irrigation water lines, landscape irrigation, and lawn or garden watering. Excessive watering can lead to discharges of chlorinated potable water runoff into drainage systems; it can also cause erosion; and negatively affect plant health. Improper irrigation can encourage pest problems, leach nutrients, and make a lawn completely dependent on artificial watering. Mosquito breeding habitats may form through excessive watering.

Pollutant Control Approach: Limit the amount and location of watering to prevent runoff and discharges to drainage systems.

Applicable Operational BMPs:

- Irrigate with the minimum amount of water needed. Never water at rates that exceed the infiltration rate of the soil.
- Maintain all irrigation systems so that irrigation water is applied evenly and where it is needed.
- Ensure sprinkler systems do not overspray vegetated areas resulting in excess water discharging into the drainage system.
- Inspect irrigated areas for excess watering. Adjust watering times and schedules to ensure that the appropriate amount of water is being used to minimize runoff. Consider factors such as soil structure, grade, time of year, and type of plant material in determining the proper amounts of water for a specific area.
- Inspect irrigated areas regularly for signs of erosion and / or discharge.
- Place sprinkler systems appropriately so that water is not being sprayed on impervious surfaces instead of vegetation.
- Repair broken or leaking sprinkler nozzles as soon as possible.
- Appropriately irrigate lawns based on the species planted, the available water holding capacity of the soil, and the efficiency of the irrigation system.
 - The depth from which a plant normally extracts water depends on the rooting depth of the plant. Appropriately irrigated lawn grasses normally root in the top 6 to 12 inches of soil; lawns irrigated on a daily basis often root only in the top 1 inch of soil.
- Do not irrigate plants during or immediately after fertilizer application. The longer the period between fertilizer application and irrigation, the less fertilizer runoff occurs.
- Do not irrigate plants during or immediately after pesticide application (unless the pesticide label directs such timing).
- Reduce frequency and / or intensity of watering as appropriate for the wet season (October 1 to April 30).

- Place irrigation systems to ensure that plants receive water where they need it. For example, do not place irrigation systems downgradient of plant's root zones on hillsides.

Recommended Operational BMPs:

- Add a tree bag or slow-release watering device (e.g., bucket with a perforated bottom) for watering newly installed trees when irrigation system is not present.
- Water deeply, but infrequently, so that the top 6 to 12 inches of the root zone is moist.
- Use soaker hoses or spot water with a shower type wand when an irrigation system is not present.
 - Pulse water to enhance soil absorption, when feasible.
 - Pre-moisten soil to break surface tension of dry or hydrophobic soils/mulch, followed by several more passes. With this method, each pass increases soil absorption and allows more water to infiltrate prior to runoff.
- Identify trigger mechanisms for drought-stress (e.g., leaf wilt, leaf senescence, etc.) of different species and water immediately after initial signs of stress appear.
- Water during drought conditions or more often if necessary to maintain plant cover.
- Adjust irrigation frequency / intensity as appropriate after plant establishment.
- Annually inspect irrigation systems to ensure:
 - That there are no blockages of sprayer nozzles.
 - Sprayer nozzles are rotating as appropriate.
 - Sprayer systems are still aligned with the plant locations and root zones.
- Consult with the local water utility, Conservation District, or Cooperative Extension office to help determine optimum irrigation practices.
- Do not use chemigation and fertigation in irrigation systems. This will help avoid over application of pesticides and fertilizers.

S424 BMPs for Roof / Building Drains at Manufacturing and Commercial Buildings

Description of Pollutant Sources: Stormwater runoff from roofs and sides of manufacturing and commercial buildings can be sources of pollutants caused by leaching of roofing materials, paints, caulking, building vents, and other air emission sources. Research has identified vapors and entrained liquid and solid droplets/particles as potential pollutants in roof/building runoff. Metals, solvents, acidic/alkaline pH, BOD, PCBs, and organics are some of the pollutant constituents identified.

Ecology has performed a study on zinc in industrial stormwater. The study is presented in *Suggested Practices to Reduce Zinc Concentrations in Industrial Stormwater Discharges* ([Ecology, 2008](#)). The user should refer to this document for more details on addressing zinc in stormwater.

Pollutant Control Approach: Evaluate the potential sources of stormwater pollutants and apply source control BMPs where feasible.

Applicable Operational Source Control BMPs:

- If leachates and/or emissions from buildings are suspected sources of stormwater pollutants, then sample and analyze the stormwater draining from the building.
- Sweep the area routinely to remove any residual pollutants.
- If a roof/building stormwater pollutant source is identified, implement appropriate source control measures such as air pollution control equipment, selection of materials, operational changes, material recycle, process changes, etc.

Applicable Structural Source Control BMPs:

- Paint/coat the galvanized surfaces as described in *Suggested Practices to Reduce Zinc Concentrations in Industrial Stormwater Discharges* ([Ecology, 2008](#)).

Applicable Treatment BMPs:

Treat runoff from roofs to the appropriate level. The facility may use Enhanced Treatment BMPs as described in [III-1.2 Choosing Your Runoff Treatment BMPs](#). Some facilities regulated by the Industrial Stormwater General Permit, or local jurisdiction, may have requirements than cannot be achieved with Enhanced Treatment BMPs. In these cases, additional treatment measures may be required. A treatment method for meeting stringent requirements such as Chitosan-Enhanced Sand Filtration may be appropriate.

S438 BMPs for Construction Demolition

Description of Pollutant Sources: This activity applies to removal of existing buildings and other structures by controlled explosions, wrecking balls, or manual methods, and subsequent clearing of

the rubble. The loose debris may contaminate stormwater.

Pollutants of concern include toxic organic compounds, hazardous wastes, high pH, heavy metals, and suspended solids.

Pollutant Control Approach: Do not expose hazardous materials to stormwater. Regularly clean up debris that can contaminate stormwater. Protect the drainage system from dirty runoff and loose particles. Sweep paved surfaces daily. Educate employees about the need to control site activities.

Applicable Operational BMPs:

- Identify, remove, and properly dispose of hazardous substances from the building before beginning construction demolition activities that could expose them to stormwater. Such substances could include PCBs, asbestos, lead paint, mercury switches, and electronic waste.
- Educate employees about the need to control site activities to prevent stormwater pollution, and also train them in spill cleanup procedures.
- Keep debris containers, dumpsters, and debris piles covered.
- Place storm drain covers, or a similarly effective containment device, on all nearby drains to prevent dirty runoff and loose particles from entering the drainage system.
 - Place the covers (or devices) at the beginning of the workday.
 - Collect and properly dispose of the accumulated materials before removing the covers (or devices) at the end of the workday.
 - Use dikes, berms, or other methods to protect overland discharge paths from runoff if stormwater drains are not present.
- Sweep street gutters, sidewalks, driveways, and other paved surfaces in the immediate area of the demolition at the end of each workday. Collect and properly dispose of loose debris and garbage.
- Lightly spray water (such as from a hydrant or water truck) throughout the site to help control windblown fine materials such as soil, concrete dust, and paint chips. Control the amount of dust control water so that runoff from the site does not occur, yet dust control is achieved. Do not use oils for dust control.

Suggested Operational BMPs:

- Construct a screen to prevent stray building materials and dust from escaping the area during demolition. Size and orient the screen to capture wind-blown materials and contain them onsite.
- Schedule demolition to take place at a dry time of the year to prevent stormwater runoff from the demolition site.

S442 BMPs for Labeling Storm Drain Inlets On Your Property

Description of Pollutant Sources: Waste materials dumped into storm drain inlets can have severe impacts on receiving waters. Posting notices regarding discharge prohibitions at storm drain inlets can prevent waste dumping. Storm drain signs and stencils are highly visible source controls that are typically placed directly adjacent to storm drain inlets.

Pollutant Control Approach: The stencil, affixed sign, or metal grate contains a brief statement that prohibits dumping of improper materials into the urban runoff conveyance system. Storm drain messages have become a popular method of alerting the public about the effects of and the prohibitions against waste disposal.

Applicable Operational BMPs:

- Label storm drain inlets in residential, commercial, industrial areas, and any other areas where contributions or dumping to storm drains is likely.
- Stencil or apply storm drain markers adjacent to storm drain inlets to help prevent the improper disposal of pollutants. Or, use a storm drain grate stamped with warnings against polluting.
- Place the marker in clear sight facing toward anyone approaching the inlet from either side.
- Use a brief statement and / or graphical icons to discourage illegal dumping. Examples include:
 - “No Dumping – Drains to Stream”
 - “No Pollutants – Drains to Puget Sound”
 - “Dump No Waste – Drains to Lake”
 - “No Dumping – Puget Sound Starts Here”
- Check with your local government agency to find out if they have approved specific signage and / or storm drain message placards for use. Consult the local agency stormwater staff to determine specific requirements for placard types and methods of application.
- Maintain the legibility of markers and signs. Signage on top of curbs tends to weather and fade. Signage on face of curbs tends to be worn by contact with vehicle tires and sweeper brooms.
- When painting stencils or installing markers, temporarily block the storm drain inlet so that no pollutants are discharged from the labeling activities.

Optional Operational BMPs:

Use a stencil in addition to a storm drain marker or grate to increase visibility of the message.

Reference for this BMP: [\(CASQA, 2003\)](#)

Figure IV-7.6: Storm Drain Inlet Labels

Storm Drain Inlet Labels

Revised October 2017

Please see <http://www.ecy.wa.gov/copyright.html> for copyright notice including permissions, limitation of liability, and disclaimer.

S443 BMPs for Fertilizer Application

Description of Pollutant Sources: Poor application of fertilizers can cause appreciable storm-water contamination. Fertilizers can leach phosphorous, nitrogen, and coliform bacteria. Fertilizers can contribute to algae blooms, increase nutrient concentrations, and deplete oxygen in receiving waters.

Pollutant Control Approach: Minimize the amount of fertilizer necessary to maintain vegetation. Control the application of fertilizer to prevent the discharge of stormwater pollution.

Applicable Operational BMPs:

- Apply the minimum amount of slow-release fertilizer necessary to achieve successful plant establishment.
- Do not fertilize when the soil is dry or during a drought.
- Never apply fertilizers if it is raining or about to rain.
- Do not apply fertilizers within three days prior to predicted rainfall. The longer the period between fertilizer application and either rainfall or irrigation, the less fertilizer runoff occurs.
- Determine the proper fertilizer application for the types of soil and vegetation involved.
- Follow manufacturers' recommendations and label directions.
- Train employees on the proper use and application of fertilizers.
- Keep fertilizer granules off impervious surfaces. Clean up any spills immediately. Do not hose down to a storm drain, conveyance ditch, or water body.
- If possible, do not fertilize areas within 100 feet of water bodies including wetlands, ponds, and streams.
- Avoid fertilizer applications in stormwater ditches, stormwater facilities, and drainage systems.
- In areas that drain to sensitive water bodies, apply no fertilizer at commercial and industrial facilities, to grass swales, filter strips, or buffer areas unless approved by the local jurisdiction.
- Use slow release fertilizers such as methylene urea, isobutylidene, or resin coated fertilizers when appropriate, generally in the spring. Use of slow release fertilizers is especially important in areas with sandy or gravelly soils.
- Apply fertilizers in amounts appropriate for the target vegetation and at the time of year that minimizes losses to surface and ground waters.
- Time the fertilizer application to periods of maximum plant uptake. Ecology generally recommends application in the fall and spring, although Washington State University turf specialists recommend four fertilizer applications per year.
- Do not use turf fertilizers containing phosphorous unless a soil sample analysis taken within

the past 36 months indicates the soil of the established lawn is deficient in phosphorus. For more information about restrictions on turf fertilizers containing phosphorus, see the following website:

<https://agr.wa.gov/departments/pesticides-and-fertilizers/fertilizers/fertilizers-containing-phosphorus>

Recommended Operational BMPs:

Test soils to determine the correct fertilizer application rates.

- Evaluation of soil nutrient levels through regular testing ensures the best possible efficiency and economy of fertilization.
- Fertilization needs vary by site depending on plant, soil, and climatic conditions.
- Choose organic fertilizers when possible.
- For details on soils testing, contact the local Conservation District, a soils testing professional, or a Washington State University Extension office.

S447 BMPs for Roof Vents

Description of Pollutant Sources: This activity applies to processes that vent emissions to the roof and/or the accumulation of pollutants on roofs. Processes of special concern are stone cutting, metal grinding, spray painting, paint stripping, galvanizing and electroplating. Pollutants from these processes may build up on roofs and may pollute stormwater roof runoff.

Pollutant Control Approach: Evaluate the potential sources of stormwater pollutants and apply source control BMPs where feasible.

Applicable BMPs:

- Identify processes that are vented and may contribute pollutants to the roof. Pollutants of concern include and are not limited to:

- Metal dust
- Grease from food preparation
- Solvents
- Hydrocarbons
- Fines
- Stone dust
- Look for chemical deposition around vents, pipes, and other surfaces.
- Install and maintain appropriate source control measures such as air pollution control equipment (filters, scrubbers, and other treatment). ([City of San José Environmental Services, 2004](#))
 - Check that your scrubber solution is appropriate for the chemistry of the fumes.
 - Install vent covers and drip pans where there are none.
 - Prevent leaks in pipefittings and containment vessels with routine maintenance.
- Consider instituting operational or process changes to reduce pollution.
- If proper installation and maintenance of air pollution control equipment does not prevent pollutant fallout on your roof, additional treatment of the roof runoff may be necessary.
 - Install/provide appropriate devices for roof runoff before it is discharged off site. This may include approved water quality treatment BMPs or structural stormwater treatment systems.
- Maintain air filters and pollution control equipment on a regular basis to ensure they are working properly. (The smell of odors from outside the building indicates that the pollution control equipment may need maintenance or evaluation.)
- When cleaning accumulated emissions from roof tops, collect the washwater and loose materials using a sump pump, wet vacuum or similar device. Discharge the collected runoff to the sanitary sewer after approval by the local sewer authority, or have a waste disposal company remove it.

S451 BMPs for Building, Repair, Remodeling, Painting, and Construction

Description of Pollutant Sources: This activity refers to:

- The construction of buildings and other structures.
- Remodeling of existing buildings and houses.
- General exterior building repair work.

Pollutants of concern include toxic hydrocarbons, hazardous wastes, toxic organics, suspended solids, heavy metals, pH, oils, and greases.

Pollutant Control Approach: Educate employees about the need to control site activities. Control leaks, spills, and loose material. Utilize good housekeeping practices. Regularly clean up debris that can contaminate stormwater. Protect the drainage system from dirty runoff and loose particles.

Applicable Operational BMPs:

- Identify, remove, and properly dispose of hazardous substances from the building before beginning repairing or remodeling activities that could expose them to stormwater. Such substances could include PCBs, asbestos, lead paint, mercury switches, and electronic waste.
- Educate employees about the need to control site activities to prevent stormwater pollution, and also train them in spill cleanup procedures.
- At all times, have available at the work site spill cleanup materials appropriate to the chemicals used on site.
- Clean up the work site at the end of each work day. Put away materials (such as solvents) indoors or cover and secure them, so that unauthorized personnel will not have access to them.
- Sweep the area daily to collect loose litter, paint chips, grit, and dirt.
- Do not dump any substance on pavement, on the ground, in the storm drain, or toward the storm drain, regardless of its content, unless it is clean water only.
- Place a drop cloth, where space and access permits, before beginning wood treating activities. Use drip pans in areas where drips are likely to occur if the area cannot be protected with a drop cloth.
- Use ground or drop cloths underneath scraping and sandblasting work. Use ground cloths, buckets, or tubs anywhere that work materials are laid down.
- Clean paint brushes and other tools covered with water-based paints in sinks connected to sanitary sewers or in portable containers that can subsequently be dumped into a sanitary sewer drain.
- Clean brushes and tools covered with non-water-based finishes or other materials in a manner that enables collection of used solvents for recycling or proper disposal. Do not discharge non-water-based finishes or paints or used solvents into the sanitary sewer, or any other drain.
- Use storm drain covers, or similarly effective devices, to prevent dust, grit, washwater, or other pollutants from escaping the work area. Place the cover or containment device over the storm drain at the beginning of the work day. Collect and properly dispose of accumulated dirty runoff and solids before removing the cover or device at the end of each work day.
- Refer to [S431 BMPs for Washing and Steam Cleaning Vehicles / Equipment / Building Structures](#) for best management practices associated with power washing buildings.

Suggested Operational BMPs:

- Lightly spray water on the work site to control dust and grit that could blow away. Do not use oils for dust control. Never spray to the point of water runoff from the site.
- Clean tools over a ground cloth or within a containment device such as a tub.
- Consider using filtered vacuuming to collect waste that may be hard to sweep, such as dust on a drop cloth.
- If conducting work in wet weather conditions, consider setting up temporary cover when scraping or pressure-washing lead-based paint.