

# CHAPTER 7

## TRANSPORTATION ELEMENT

### INTRODUCTION

#### **Purpose of the Transportation Element**

This element addresses the motorized and non-motorized transportation needs of the Town of La Conner for the planning horizon 2024 through 2039. This element specifically considers the location and condition of existing traffic circulation and parking, as well as the cause, scope, and nature of transportation problems, projected transportation needs, and plans for addressing all transportation needs while maintaining established level of service standards.

The Transportation Element aims to ensure that the city's town's transportation system supports land uses envisioned by the Comprehensive Plan. As required by the Growth Management Act, the Transportation Element must demonstrate that there is enough transportation system capacity to serve the land uses that are planned, and to serve them at the level of service established in the Town's goals and policies. This element also seeks to advise a financing plan for inclusion in the Capital Facilities Element of this plan, to show how planned transportation improvements will be funded.

#### **Concurrency**

The levels of service (LOS) currently in place will be maintained to meet future needs through upkeep of the existing streets and roadways, and expansion of transportation services where such needs are indicated. The Uniform Development Code (Chapters 15.85 and 15.86) provides for street infrastructure development and standards to be concurrent with adjacent property development. La Conner participates in a Regional Transportation Organization through the Skagit Council of Governments (SCOG). Levels of Service for public transit are set forth in the comprehensive plan prepared by Skagit Transit. That plan also includes an inventory of public transit assets, and a forecast of future public transit needs.

The purpose of concurrency is to ensure that the public facilities and services necessary to support development are adequate to serve that development at the time it is available for occupancy and use, without decreasing service levels below locally established minimums. In order to do this, the Town and Skagit County must maintain concurrency management systems that monitors the impacts of growth and

development on the transportation system, with aims to ensure that LOS standards are met within required time frames.

### **Major Transportation Considerations**

Transportation concerns in La Conner differ from the concern that may be found in larger cities. Safety is the primary concern, specifically, the speed of vehicles travelling through the Town. In addition, the Town faces challenges with traffic flow and parking during peak tourist seasons, but a more stable and manageable traffic pattern during 10-11 months of the year. It has been determined that it would not be practical to design a system that would accommodate every peak weekend or time of year but to establish, like most cities, the average conditions to be addressed. A Safe Routes to Schools system from the Swinomish Village through La Conner to the school remains an incomplete goal for the transportation system. In addition to safety, the Town desires a well-designed transportation system that allows for efficient movement both motorized and non-motorized.

La Conner is a popular tourist destination. A transportation system that safely and conveniently enables tourists to enjoy the community is a priority.

Improving mobility throughout La Conner is the overall focus of the transportation element.

### **Parking**

In recent years, it is becoming increasingly apparent that parking (or the lack thereof) is becoming an area of increasing concern, particularly (but not exclusively) in the areas zoned for commercial uses. Informal surveys of parking availability during the tourist season (April 1 through October 30), particularly on South First Street, indicate that available public parking is virtually full during business hours. Surveys also note that many of the on-street parking spaces are occupied by business owners or their employees.

The following chart documents the amount of available parking:

**FIGURE 7.1****DOWNTOWN PARKING SURVEY; First Street**

|                           |           | Public, On-street, Unrestricted | Public, Time Restricted | Public, off-street | Private, off-street | ADA      | Prohibited | Pay-to-park | E.V.       | TOTALS     |
|---------------------------|-----------|---------------------------------|-------------------------|--------------------|---------------------|----------|------------|-------------|------------|------------|
| <b>South First Street</b> |           |                                 |                         |                    |                     |          |            |             |            |            |
| west side                 | 33        | 4                               | 22                      | 45                 | 5                   |          | 20         | 2           |            |            |
| east side                 | 36        | 4                               |                         | 16                 | 4                   | 2        |            |             |            |            |
| <b>Totals</b>             | <b>69</b> | <b>8</b>                        | <b>22</b>               | <b>61</b>          | <b>9</b>            | <b>2</b> | <b>20</b>  | <b>2</b>    | <b>193</b> |            |
|                           |           |                                 |                         |                    |                     |          |            |             |            |            |
| <b>North First Street</b> |           |                                 |                         |                    |                     |          |            |             |            |            |
| west side                 | 13        | 2                               |                         | 30                 | 3                   | 1        |            |             |            |            |
| east side                 | 15        |                                 |                         | 5                  |                     |          |            |             |            |            |
| <b>Totals</b>             | <b>28</b> | <b>2</b>                        |                         | <b>35</b>          | <b>3</b>            | <b>1</b> |            |             | <b>69</b>  |            |
|                           |           |                                 |                         |                    |                     |          |            |             |            |            |
| <b>TOTAL PARKING</b>      |           |                                 |                         |                    |                     |          |            |             |            | <b>262</b> |

The available parking on this chart does not include parking areas owned by the Port of Skagit County, or the parking lot located on Third Street to the south of Town Hall.

South First Street and its surrounding area may be regarded as La Conner's Central Business District. The restaurants, retail shops, art galleries, hotels, apartments, and waterfront access constitute the core of the town's commerce and tourism attractions. Easy access to this area is essential to the community.

In the past, several suggestions have been made in an effort to increase parking availability, and therefore access, to the Central Business District. Those ideas have included:

1. Add time restrictions on parking to discourage employee and business owner parking.
2. Add parking enforcement.
3. Add paid parking, both on-street and off-street.
4. Provide better advertising for existing parking.
5. Transform South First Street to one-way driving.
  - This could add parking opportunities by creating angle parking.
  - This would also increase traffic on other streets, notably South Second Street.
6. Close South First Street to all traffic between 10:00 a.m. and 7:00 p.m., and provide a shuttle. This raises the question of who pays for the shuttle, and who staffs the shuttle?

Each of these suggestions creates the potential for impacts that would need to be addressed. In addition, many of these suggestions would require the expenditure of funds that have not been budgeted.

Businesses located on North First Street and Morris Street appear to have more off-street parking available to them. Parking impacts will be reviewed again after the South First Street one-way change has been in effect.

### **South First Street**

After extensive review, discussion, and public comment, the Town Council voted to convert South First Street to one-way traffic, with parallel parking on both sides of the street. This change recognizes that the narrow lanes on this street created a safety hazard, especially when emergency vehicles need access.

Traffic on South Second Street will be monitored to determine whether the traffic change on South First Street will have a significant impact there. The conversion of South First Street to a one-way traffic pattern, and the resulting changes in parking on that street, constitutes the town's best effort at a Transportation Demand Management strategy. To date, response to the change in the traffic pattern has been positive.

### **Non-motorized Transportation**

Increasing the use of non-motorized transportation may benefit the town by helping to reduce the need for motor vehicles in some instances. As housing densities increase, for example, the ability to reduce the number of on-site parking spaces may be helpful.

Most streets in the town's Commercial zones lack sufficient width to accommodate bicycle lanes. In residential areas, the possibility exists to safely add bicycle lanes.

Particularly on Maple Avenue, there may be an opportunity to connect existing bicycle lanes from La Conner-Whitney Road to the Rainbow Bridge, thus promoting greater access to both Swinomish tribal lands and to public parks in La Conner.

### **Electric Vehicles**

As the use of electric vehicles increases, so will the need to accommodate their use. The town currently has charging stations for two electric vehicles on South First Street. The feasibility of placing additional charging stations should be considered.

### **Public Transit**

Skagit Transit offers one route (615) from Skagit Station in Mount Vernon through La Conner, and a second route from the March Point park-and-ride on the outskirts of Anacortes, to La Conner. Scheduled routes to both locations are limited in their potential for bringing workers to or from the town.

The use of a smaller shuttle bus through the town's downtown corridor would be a big help in promoting tourism, and could help to reduce overall traffic downtown. The town has contacted Skagit Transit to discuss the feasibility of adding such a shuttle.

### **Coordination of Transportation Facilities**

The Town is accessed via a system of county and state highways, which are maintained by those entities. The Town does not possess the resources, nor is it fiscally responsible for addressing all the traffic circulation system needs that may be identified through regional transportation planning. However, the Town has adequate funds and resources to maintain its existing transportation corridors.

The GMA also requires regional consistency between the Countywide Planning Policies (CWPP) regarding transportation and this transportation plan. Chapter 1 of the Comprehensive Plan discusses the overall Comprehensive Plan consistency with the CWPPs including transportation.

### **Financing**

A Six-year Transportation Infrastructure Plan (TIP) for construction and maintenance improvements to the streets in La Conner is adopted annually by resolution. The Transportation Element looks further out and establishes a 20-year project list and financing plan. Local funding is provided in part from Local Option Sales Tax, Real Estate Excise Tax, and User Fees. State and Federal grants are also sought to assist with transportation infrastructure maintenance. The Town has not opted to implement a transportation impact fee at this time. However, as the state legislature increases its oversight of parking issues, the Town may consider adding a traffic impact fee to address future residential and commercial parking needs.

### **Six Year Financing Plan**

The level of service (LOS) standards adopted in this element are consistent with the level of service standards or plans of similar jurisdictions.

The Town, after careful analysis, has prepared a priority list of capital improvements for the Six-Year Financing Plan (this is also known as the TIP). The TIP is incorporated by reference and included as an appendix to the Comprehensive plan. The TIP is the result of an iterative process that balances the goals of all comprehensive plan elements. In addition, the objectives and policies in the Transportation Element have been modified to reflect their financial feasibility. The timing and funding for transportation improvements are restricted by the concurrency requirement and the binding nature of level of service standards.

The Town is required to create a six-year financing plan for transportation (TIP). The Town is also required to provide services concurrently with new development. In addition, existing and new transportation facilities must meet the adopted level of service standards. Therefore, as new development occurs, expenditures on maintenance of existing facilities must be adequate to continue provision of the adopted levels of service. The operating costs of transportation facilities become important factors in ensuring that a moratorium on new development is not imposed. The funding mechanisms and funding sources that will be used for transportation improvements are included in the TIP for projects in the short term. Long term financing is discussed in the following section.

Primarily the Town relies on grant funding to complete its capital projects. The timing of grant funds can be unpredictable. Project timelines may be pushed forward or back depending on grant availability. In the event that grant funding is not available or insufficient to complete a project, it will be reevaluated.

Expenditure and revenue projections are set forth in the town's annual Transportation Improvement Program.

## **Tax Revenues**

The Town currently directs revenues from two primary tax funds toward transportation improvements and programs. These are General Fund Appropriations and Motor Vehicle Fuel Taxes (MVFT).

## **Grants**

The Town has had tremendous success ~~over the last 10 plus in recent~~ years securing grants for transportation projects. Grant funding has accounted for much of the transportation budget over the last decade and is anticipated to continue to provide the needed revenues to fill the gap between projected expenses and revenues.

Funding through grants is tied to specific programs and types of projects. Several grant programs target transportation projects that support regional economic growth, mobility, and other travel models.

The Surface Transportation Block Grant Program (STBG) (previously known as STP) and STBG set-aside (previously known as TAP) is one of the most flexible federal grant programs. These funding sources can be used for highway and bridge projects, transit capital projects, and funding for bicycle, pedestrian, and recreational trail improvements. They also can be used for public transportation capital improvements, car and vanpool projects, fringe and corridor parking facilities, and inter-Town or intra-Town bus terminals and bus facilities. These funds also can be applied to surface transportation planning activities, wetland mitigation, transit research and development, and environmental analysis. Finally, the funds also can be used for transportation control measures.

The State Transportation Improvement Board (TIB) currently provides funding for urban areas in Washington through three grant programs:

- Urban Arterial Program (UAP) – funds projects that address safety, growth & development, physical condition and mobility.
- Urban Sidewalk Program (SP) - provides funding for sidewalk projects that improve safety and connectivity.
- Arterial Preservation Program (APP) - provides assistance for roadway paving/overlays for cities/agencies with less than \$2 billion assessed valuation.

The TIB projects are selected on a competitive basis. Each of the three programs has distinct criteria to rank the projects for funding. Once selected, TIB staff stays involved through grant oversight and helping bring projects to completion.

WSDOT administers various grants which fund non-motorized transportation improvements. The Safe Routes to Schools Program funds projects which are targeted at reducing collisions between vehicular and non-motorized road users and improving the accessibilities of schools to children on foot or bike. The WSDOT Pedestrian and Bicycle Program funds projects which promote healthy living through active transportation,

improves non-motorized user safety, reduces vehicular travel, and has community support

### **Bonds**

Bonds do not result in additional revenues, but allow the Town to fund and construct projects earlier than they would be able to under their current revenue options. The interest on these bonds results in increased costs.

Although the Town has not issued bonds in the recent past and does not anticipate issuing new bonds in the near future, it remains an option available for accelerating funding on some of the capital improvement projects included in this Transportation Element over the life of the plan. However, use of bonds would add to the total cost of the improvements due to accrued interest.

### **Traffic Impact Fees**

The Growth Management Act (GMA) allows agencies to develop and implement a traffic impact fee (TIF) program to help fund some of the costs of transportation facilities needed to accommodate growth. The Town currently does not have a TIF program. If there is a change in future development plans that require capacity improvements, or if future state mandates require changes in parking regulations, the Town could pursue such a traffic impact fee. State law (Chapter 82.02 RCW) requires that TIFs be:

- Related to improvements to serve new developments and not existing deficiencies
- Assessed proportional to the impacts of new developments
- Allocated for improvements that reasonably benefit new development
- Spent on facilities identified in the Capital Facilities Plan.

### **Developer Commitments**

The Town can also implement its transportation improvements by requiring developers to construct frontage improvements, to mitigate their traffic impacts pursuant to the State Environmental Policy Act (SEPA). The Town can require developments to fund and construct certain roadway improvements as part of their projects. These typically include constructing abutting local streets and arterials to meet the Town's design standards. These improvements can include widening of pavement, drainage improvements, curbs, gutters, bicycle facilities, parking lots, and sidewalks. Design and development standards should reflect the Town's desire for developments to construct frontage improvements to mitigate impacts of additional development traffic.

The Town evaluates impacts of development projects under SEPA. The SEPA review may identify adverse transportation impacts that require mitigation. These could include impacts related to safety, traffic operations, non-motorized travel, transit access, or other transportation issues.

Per GMA, the Town requires an evaluation of transportation concurrency for development projects. The concurrency evaluation may identify impacts that make the

facilities operate below the Town's level of service standard. To resolve any deficiencies, the applicant can propose to fund and/or construct improvements to provide an adequate level of service. Alternatively, the applicant may decide to wait for the Town, another agency, or another developer to fund and/or construct the needed improvements.

### **Transportation Benefit District**

Some jurisdictions provide for the formation of a Transportation Benefit District (TBD) as an option for helping fund transportation projects and programs (<http://mrscc.org/Home/Explore-Topics/Finance/Special-Topics/Transportation-Benefit-Districts.aspx>). Over 100 cities in Washington State have TBD's.

TBD funding needs to be used to fund specific projects related to street pavement preservation projects located throughout the Town. In addition, the TBD revenues can be used to fund several specific sidewalk and roadway shoulder improvement projects.

## **POLICIES**

The Transportation Policies have been grouped to reflect the identified major transportation considerations.

### **Safety**

- S-1. As a high priority, maintain, preserve, and operate the town's transportation system in a safe and functional state.
- S-2. Provide for safe and expeditious vehicular and pedestrian traffic movement through the town. Place emphasis on the most heavily accessed areas, i.e. Morris Street, South First Street, and Maple Avenue.
- S-3. Give a high priority to and budget for safety and mobility projects. Specifically focus on Morris/Maple intersection; Maple Street.
- S-4. Provide adequate shoulders, sidewalks, and street lighting. Specifically focus on Maple.
- S-5. Work to improve opportunities for, and increase the number of, pedestrian crossings. Specifically focus on Maple.
- S-6. In our concern for safety for all travelers; while making planning and budget decisions the Town will utilize the following prioritization for different travel modes. This prioritization is meant to give first consideration to those who are most vulnerable.

- A. Pedestrian
- B. Bicycle

- C. Motorcycle
- D. Other Motorized vehicles.

- S-7. Using the prioritization list above provide facilities for, and education on, safe and non-threatening travel throughout the city on all modes of transportation using the prioritization list above.
- S-8. Keep an emphasis on the enforcement of motorized and non- motorized safety laws.
- S-9. Consider roundabouts and traffic calming devices to reduce excessive speeding and other unsafe driving choices.
- S-10. Use bump outs, curb extensions, and/or pedestrian refuge islands in the design and construction of pedestrian crossings when appropriate and feasible.
- S-11. Encourage and plan for safe and efficient pedestrian movement between and to and from neighborhoods gathering spaces, public facilities, and parks.
- S-12. Work to develop safe routes to schools for pedestrians and bicycles.
- S-13. Fill in gaps in the bicycle and pedestrian network whenever possible.
- S-14. Evaluate the need for additional vehicular access to the high school.

## Design

- D-1. Focus on designing, constructing, operating and maintaining transportation facilities to serve all users safely and conveniently, including motorists, pedestrians, bicyclists, and people with disabilities.
- D-2. Plan transportation and street improvements to consider the existing and desired character of the area and cost of future maintenance.
- D-3. Encourage through-streets in new development wherever possible.
- D-4. Maintain all existing streets and sidewalks in good repair at all times.
- D-5. Extend the boardwalk and encourage waterfront upgrades.

D-6. Identify and resolve property ownership in areas where Town streets encroach on private property, or where private property encroaches on public ways.

D-7. Encourage the use of public parking lots by providing directional signage.

D-8. Offer incentives for business owners and employees that would encourage the use of existing parking lots in town.

D-9. Ensure that businesses unable to provide the number of parking spaces required by ordinance comply with the provisions in the La Conner Municipal Code.

D-10. Require adequate off-street parking for all zones.

D-11. Provide adequate parking space in high demand areas by:

- Developing a comprehensive parking plan which designates immediate and future parking lot sites and shuttle parking lots,
- Creating an action plan to implement a comprehensive parking plan over time,
- Identifying minimum and maximum parking standards,
- Encourage shared parking agreements between uses that have different hours of operation.

D-12. Survey parking space availability and occupancy to establish a baseline and determine needs for additional space and location.

D-13. Parking in the First Street Historic Neighborhood will be consistent with the intent of the district to maintain the compact fabric and consistent rhythm created by the incremental construction of small to medium size buildings on the originally platted small lots. This can be accomplished by removing the requirement for off street parking for buildings in this neighborhood, and by assessing parking fees to fund alternative parking arrangements.

D-14. Maintain established truck routes with appropriate signage.

D-15. Encourage joint use of transportation corridors for utility purposes.

D-16. Protect the investment in the existing system and lower overall life-cycle costs through effective maintenance and preservation programs.

- D-17. Prioritize essential maintenance, preservation, and safety improvements of the existing transportation system to protect mobility and avoid more costly replacement projects.
- D-18. Reserve undeveloped town right-of-way for future use and do not vacate town right-of-way unless overwhelmingly beneficial to the town. Create an overall plan for the development of undeveloped rights-of-way, especially on First and Second Streets.
- D-19. Improve local street design for walking, bicycling, and transit use to enhance communities, connectivity, and physical activity.
- D-20. Provide opportunities for an active, healthy lifestyle by integrating the needs of pedestrians and bicyclists in the local and regional transportation plans and systems.
- D-21. Be flexible with development standards to promote infill by allowing alternate ways, such as narrower streets, modified parking requirements, one-way streets, and/or low-speed design streets to meet those standards where full compliance with standards is not feasible or desirable.
- D-22. When feasible, design and operate transportation facilities in a manner that emphasizes community character and is compatible with and integrated into the natural and built environment including features, such as street trees, natural drainage, native plantings, and local design themes.
- D-23. Support transportation programs and projects in ways that aim to prevent or minimize negative impacts to low income, minority, and special needs populations.
- D-24. Work to improve mobility choices for people with special transportation needs, including persons with disabilities, the elderly, the young, and low-income populations.
- D-25. Budget for, and provide, the construction and repair of sidewalks and ramps to meet ADA standards according to priorities established in the 2016 ADA Transition Plan.

## **Multi-Modal**

- MM-1. Encourage multi-modal transportation routes that would most efficiently link residential, commercial and industrial areas of the Town.

- MM-2. Invest in transportation systems that offer greater options, mobility, and access in support of the town's growth strategy.
- MM-3. Ensure pedestrian and bicycle paths are safe and easily accessed.
- MM-4. Develop a plan for sidewalk network and connectivity.
- MM-5. Encourage access for low-impact transportation, such as bicycles and wheelchairs, through the provision of pedestrian walkways throughout town and along the shoreline.
- MM-6. Promote healthy lifestyles by implementing the pedestrian and bicycle components of the Transportation Plan.
- MM-7. Identify and designate planned improvements for pedestrian and bicycle facilities as appropriate throughout the Town and at the Port of Skagit County Marina.
- MM-8. Provide trails and pathways to connect residential areas with government and business areas.
- MM-9. Along with trails, pathways, and boardwalk access, increase the opportunities for free or low-cost, non-competitive, outdoor recreational and fitness activities.

## **CAPACITY FOR VARIOUS ROADWAY CLASSIFICATIONS AND MODIFICATIONS**

| <b>Functional Classification</b> | <b>Left-Turn Lane (vph)</b> | <b>Access Management (vph)</b> | <b>No Bike Lane (vph)</b> | <b>No Sidewalk (vph)</b> | <b>On-Street Parking (vph)</b> |
|----------------------------------|-----------------------------|--------------------------------|---------------------------|--------------------------|--------------------------------|
| Principal Arterial               | +450                        | +540                           | -90                       | -180                     | -45                            |
| Minor Arterial                   | +400                        | +480                           | -40                       | -80                      | -40                            |
| Local Collector                  | -                           | -                              | -                         | -                        | -                              |

Intersection LOS is calculated using standard Highway Capacity Manual analysis procedures for the PM peak hour. The adopted standard is LOS D for intersections that include Principal Arterials and LOS C for intersections that include Minor Arterial or collector roadways.

# Appendix 7A

## Data and Analysis

### Traffic Circulation within the Town

The traffic circulation system within La Conner can generally be described as a grid system. The Town is accessed via a county highway which passed through town, leads across the county-owned Rainbow Bridge leading through the Swinomish Village and towards streets on the Swinomish reservation. The major entrance into the downtown commercial area on First Street is via Morris Street. Routes leading to the industrial areas branch off Morris to Third Street on the north and via Maple Avenue and Caledonia Street to the south. Access to county roads and state highways is via Chilberg Road to the east and La Conner-Whitney Road to the north, connecting to State Highway 20 and nine miles east to Interstate 5. Trucks in route to the south industrial area circumvent the Town via Maple Avenue and Caledonia Street. The Port of Skagit County Marina, north of town, can be reached via Morris and Third Streets. The Port of Skagit County has expressed an interest in creating an additional point of access to their property by creating a new roadway adjacent to the drainage slough that crosses La Conner-Whitney Road.

### Influence of Regional Traffic

During the peak tourist season and special events, such as the Skagit Valley Tulip Festival, traffic flow is heavy, constant and slow due to congestion at the access and egress points. Historic traffic data shows peak seasonal volumes can increase traffic volumes by 35% compared non-peak periods. There is also inadequate use of available parking areas outside the immediate First Street area.

### Mass Transit

Tour buses serve the tourist industry, and county van service provides transportation to elderly tenants of the Harbor Villa apartment complex and the La Conner Retirement Inn. In 1993, La Conner was included in the Skagit Public Transit Benefit Area. Skagit Transit provides one fixed-route serving La Conner, Route 615. This route has 3-hour headways on weekdays and 2-hour headways on Saturdays connecting La Conner to Anacortes and Mount Vernon.

Most people in La Conner use automobiles to travel to work, therefore, mass transit is most important to those who cannot drive, for example: for the elderly, low-income individuals, people with disabilities, or youth who do not have

alternative means of transportation. The greatest need is for mobility between the town and other urban areas, such as Mount Vernon.

### **Pedestrian Walkways/Bicycle Lanes**

Pedestrian access to all points in La Conner is convenient but inadequate. Sidewalks do not exist in all areas of town. Some public rights-of-way are sufficient to provide safe walking paths but many are graveled and not conducive to walking or biking.

Sidewalks line the main thoroughfares and one side of some secondary streets. Some streets have no sidewalks at all and are not ADA compatible. Some walking paths have been described for touristic purposes but they are not designed to meet the needs of residents nor are they marked. A boardwalk along the shoreline on First Street is used by visitors and residents alike.

Bike lanes enter the town from the traffic circle and end in a few blocks to become sharrows and then disappear entirely. Bicycle parking is available throughout the commercial areas.

Bicycle facilities (lanes and sharrows) are provided on Morris Street from La Conner-Whitney Road to First Street. Bicycles are restricted from riding on downtown sidewalks and the boardwalk. Wheelchair access to walkways and streets is difficult and dangerous in some areas. In the downtown area most curbs have been cut and ramped for wheelchair access.

### **Curbs, Sidewalks, Landscaping, and Lighting**

The La Conner Public Works Department is responsible for maintaining the Town's streets as well as landscaped Town property. Puget Sound Energy maintains electrical utility poles and lights. These features contribute to the safety and quality of the Town's residential, commercial and industrial areas. A few areas in La Conner do not have developed streets, sidewalks or lights. These amenities would be in place concurrent with new development as it occurs.

### **Past Transportation Problems**

Flooded streets and right-of-ways due to stormwater runoff still persist. Traffic congestion during the tourist season is ongoing. Most streets have been repaved over the last five years, but need continuous upkeep as well as sidewalks and adequate drainage. Safety in the vicinity of crosswalks leading to the schools has been a concern, as are all street crossings, where pedestrian right-of-ways may not be observed. Improved crossings at intersections near the schools are being implemented.

### **Level of Service**

In this element, Level of Service thresholds consist of the following descriptions. LOS thresholds for different intersection control are summarized in the table that follows:

- A. Free-flow traffic conditions, with minimal delay to stopped vehicles at intersections. Volume-to-capacity (V/C) ratio of 0.60 or less or intersection delays of less than 10 seconds on average.
- B. Generally stable traffic flow conditions. V/C ratio of 0.70 or less or intersection delays of 10-15 seconds on average.
- C. Occasional backups may develop, but delay to vehicles is short-term and still tolerable. V/C ratio of 0.80 or less or intersection delays of 15-25 seconds on average.
- D. During short periods of the peak hour, delays to approaching vehicles may be substantial but are tolerable during times of less demand. V/C ratio of 0.90 or less or intersection delays of 25-35 seconds on average.
- E. Intersections operate at or near capacity, with long queues developing on all approaches and long delays. V/C ratio of 1.00 or less or intersection delays of 35-50 seconds on average.
- F. Jammed conditions on all approaches with excessively long delays and vehicles unable to move at times. V/C ratio of greater than 1.00 or intersection delays greater than 50 seconds on average.

| Level of Service | Expected Delay              | Intersection Control Delay (Seconds per Vehicle) |                                     |
|------------------|-----------------------------|--------------------------------------------------|-------------------------------------|
|                  |                             | Unsignalized Intersections                       | Signalized/Roundabout Intersections |
| A                | Little/No Delay             | $\leq 10$                                        | $\leq 10$                           |
| B                | Short Delays                | $>10$ and $\leq 15$                              | $>10$ and $\leq 20$                 |
| C                | Average Delays              | $>15$ and $\leq 25$                              | $>20$ and $\leq 35$                 |
| D                | Long Delays                 | $>25$ and $\leq 35$                              | $>35$ and $\leq 55$                 |
| E                | Very Long Delays            | $>35$ and $\leq 50$                              | $>55$ and $\leq 80$                 |
| F                | Extreme Delays <sup>1</sup> | $>50$                                            | $>80$                               |

The minimum Level of Service Standard for the Town is LOS D for all intersections containing principal arterials and LOS C for all other intersections. All Town streets and County roads in the La Conner area are operating below their daily and peak-hour volume capacities. The following tables summarize the existing roadway and intersection levels of service.

---

<sup>1</sup> When demand volume exceeds the capacity of the lane, extreme delays will be encountered with queuing which may cause severe congestion affecting other traffic movements in the intersection.

| Road                     | Segment                  | Existing Volume |       | Capacity (vphpl <sup>2</sup> ) | Max v/c | LOS |
|--------------------------|--------------------------|-----------------|-------|--------------------------------|---------|-----|
|                          |                          | NB/EB           | SB/WB |                                |         |     |
| Morris Street            | w/o La Conner-Whitney Rd | 380             | 370   | 900                            | 0.42    | A   |
| Maple Avenue             | s/o Morris St            | 200             | 250   | 780                            | 0.32    | A   |
| Morris Street            | e/o 1 <sup>st</sup> St   | 60              | 60    | 720                            | 0.08    | A   |
| 1 <sup>st</sup> Street   | s/o Morris St            | 50              | 60    | 720                            | 0.08    | A   |
| N 6 <sup>th</sup> Street | n/o Morris St            | 110             | 80    | 720                            | 0.15    | A   |
| Caledonia Street         | e/o S 3 <sup>rd</sup> St | 50              | 30    | 400                            | 0.13    | A   |

| Intersection                               | Intersection Control   | Direction            | LOS Standard | Existing LOS  |
|--------------------------------------------|------------------------|----------------------|--------------|---------------|
| 1 <sup>st</sup> Street @ Morris Street     | All-Way Stop Control   | Intersection Average | C            | A, 7 seconds  |
| 2 <sup>nd</sup> Street @ Morris Street     | Minor-Leg Stop Control | Northbound           | C            | A, 9 seconds  |
|                                            |                        | Southbound           | C            | A, 10 seconds |
| Whatcom Street @ Morris Street             | Minor-Leg Stop Control | Northbound           | C            | B, 10 seconds |
|                                            |                        | Southbound           | C            | B, 11 seconds |
| 6 <sup>th</sup> Ave @ Morris Street        | All-Way Stop Control   | Intersection Average | C            | A, 9 seconds  |
| Morris Street @ Maple Avenue               | Minor-Leg Stop Control | Eastbound            | D            | B, 13 seconds |
|                                            |                        | Northbound           | D            | A, 9 seconds  |
| 1 <sup>st</sup> Street @ Washington Street | Minor-Leg Stop Control | Eastbound            | C            | A, 10 seconds |
|                                            |                        | Westbound            | C            | A, 9 seconds  |
| 2 <sup>nd</sup> Street @ Washington Street | Minor-Leg Stop Control | Eastbound            | C            | A, 9 seconds  |
|                                            |                        | Westbound            | C            | A, 9 seconds  |
| 2 <sup>nd</sup> Street @ Douglas Street    | All-Way Stop Control   | Intersection Average | C            | A, 7 seconds  |
| Maple Avenue @ Hill Street                 | Minor-Leg Stop Control | Eastbound            | D            | B, 12 seconds |
| 3 <sup>rd</sup> Street @ Caledonia Street  | All-Way Stop Control   | Intersection Average | C            | A, 7 seconds  |

Under normal conditions most streets and intersections in La Conner operate at a level of service (LOS) of B or better. Occasional backups may develop, but delays are short-term and still tolerable. There are no existing level of service deficiencies in the Town during the regular weekday.

### Application of Concurrency

Because La Conner is a small town with relatively few development permit applications, a single development may have a significant impact on the town as a whole. The Town reviews each permit for concurrency at the time of application, and transportation issues, such as ingress, egress, and parking availability are assessed.

<sup>2</sup> Vehicles per hour per lane

## Future Needs and Alternatives

Traffic counts near the Town have not shown significant growth. However, in order to provide a conservative analysis for potential future roadway volumes, a 1.5% annual growth rate was applied to existing non-peak season weekday volumes. This annual growth rate is in line with population and employment growth estimates for La Conner in the Skagit 2040 Regional Transportation Plan (Exhibit 3-7).

Additionally, a seasonal sensitivity analysis was performed to estimate future operations of the roadway network during peak weekday tourist season in April. Future volumes were increased by an additional 35% based on comparisons of peak vs. non-peak traffic volumes. The tables that follow summarize the future 2030 LOS for roadways and intersections.

| Road                     | Segment                  | 2030 Volume |       | Capacity (vphpl <sup>3</sup> ) | Max v/c | LOS |
|--------------------------|--------------------------|-------------|-------|--------------------------------|---------|-----|
|                          |                          | NB/EB       | SB/WB |                                |         |     |
| Morris Street            | w/o La Conner-Whitney Rd | 440         | 440   | 900                            | 0.49    | A   |
| Maple Avenue             | s/o Morris St            | 230         | 300   | 780                            | 0.38    | A   |
| Morris Street            | e/o 1 <sup>st</sup> St   | 70          | 70    | 720                            | 0.10    | A   |
| 1 <sup>st</sup> Street   | s/o Morris St            | 60          | 70    | 720                            | 0.10    | A   |
| N 6 <sup>th</sup> Street | n/o Morris St            | 140         | 100   | 720                            | 0.19    | A   |
| Caledonia Street         | e/o S 3 <sup>rd</sup> St | 50          | 30    | 400                            | 0.13    | A   |

| Road                     | Segment                  | 2030 Volume (+35%) |       | Capacity (vphpl <sup>4</sup> ) | Max v/c | LOS |
|--------------------------|--------------------------|--------------------|-------|--------------------------------|---------|-----|
|                          |                          | NB/EB              | SB/WB |                                |         |     |
| Morris Street            | w/o La Conner-Whitney Rd | 590                | 590   | 900                            | 0.66    | B   |
| Maple Avenue             | s/o Morris St            | 310                | 410   | 780                            | 0.53    | A   |
| Morris Street            | e/o 1 <sup>st</sup> St   | 90                 | 90    | 720                            | 0.13    | A   |
| 1 <sup>st</sup> Street   | s/o Morris St            | 80                 | 90    | 720                            | 0.13    | A   |
| N 6 <sup>th</sup> Street | n/o Morris St            | 190                | 140   | 720                            | 0.26    | A   |
| Caledonia Street         | e/o S 3 <sup>rd</sup> St | 70                 | 40    | 400                            | 0.18    | A   |

<sup>3</sup> Vehicles per hour per lane

<sup>4</sup> Vehicles per hour per lane

| Intersection                               | Intersection Control   | Direction            | LOS Standard | Existing LOS | 2030 LOS  | 2030 LOS (+35%) |
|--------------------------------------------|------------------------|----------------------|--------------|--------------|-----------|-----------------|
| 1 <sup>st</sup> Street @ Morris Street     | All-Way Stop Control   | Intersection Average | C            | A, 7 sec     | A, 7 sec  | A, 8 sec        |
| 2 <sup>nd</sup> Street @ Morris Street     | Minor-Leg Stop Control | Northbound           | C            | A, 9 sec     | A, 9 sec  | A, 10 sec       |
|                                            |                        | Southbound           | C            | A, 10 sec    | B, 10 sec | B, 11 sec       |
| Whatcom Street @ Morris Street             | Minor-Leg Stop Control | Northbound           | C            | B, 10 sec    | B, 11 sec | B, 12 sec       |
|                                            |                        | Southbound           | C            | B, 11 sec    | B, 12 sec | B, 13 sec       |
| 6 <sup>th</sup> Ave @ Morris Street        | All-Way Stop Control   | Intersection Average | C            | A, 9 sec     | B, 10 sec | B, 12 sec       |
| Morris Street @ Maple Avenue               | Minor-Leg Stop Control | Eastbound            | D            | B, 13 sec    | C, 16 sec | D, 31 sec       |
|                                            |                        | Northbound           | D            | A, 9 sec     | A, 9 sec  | A, 10 sec       |
| 1 <sup>st</sup> Street @ Washington Street | Minor-Leg Stop Control | Eastbound            | C            | A, 10 sec    | A, 10 sec | B, 10 sec       |
|                                            |                        | Westbound            | C            | A, 9 sec     | A, 9 sec  | A, 9 sec        |
| 2 <sup>nd</sup> Street @ Washington Street | Minor-Leg Stop Control | Eastbound            | C            | A, 9 sec     | A, 9 sec  | A, 10 sec       |
|                                            |                        | Westbound            | C            | A, 9 sec     | A, 10 sec | A, 10 sec       |
| 2 <sup>nd</sup> Street @ Douglas Street    | All-Way Stop Control   | Intersection Average | C            | A, 7 sec     | A, 7 sec  | A, 8 sec        |
| Maple Avenue @ Hill Street                 | Minor-Leg Stop Control | Eastbound            | D            | B, 12 sec    | B, 14 sec | C, 17 sec       |
| 3 <sup>rd</sup> Street @ Caledonia Street  | All-Way Stop Control   | Intersection Average | C            | A, 7 sec     | A, 7 sec  | A, 8 sec        |

The level of service analysis shows that all intersections will operate better than their LOS standard in the 2030 non-peak conditions. After including a 35% increase in intersection volume to the weekday non-peak 2030 forecast, one intersection is expected to operate at its LOS standard—Morris Street at Maple Avenue. Two potential improvements to the Morris Street at Maple Avenue intersection were analyzed to improve operations even though it would operate at an acceptable LOS D in the future conditions during peak tourist season.

The first improvement analyzed was an all-way stop-controlled intersection that maintained free-flow movements (i.e. no stop control) for westbound through movements and restricting northbound left turns. Northbound left turns would divert to Road Street south of the Morris Street at Maple Avenue intersection and continue north on N 6<sup>th</sup> Street. This configuration would allow the intersection to operate at LOS C in the 2030 peak-season conditions.

The second improvement analyzed was a single lane roundabout. No turn restrictions were assumed in this scenario. The single-lane roundabout is expected to operate at LOS A in the 2030 peak-season conditions. Operations for the intersection improvements are summarized in the following table.

| Intersection                    | Approach         | 2030 Peak-Season LOS   |                      |                        |
|---------------------------------|------------------|------------------------|----------------------|------------------------|
|                                 |                  | Existing Configuration | All-Way Stop Control | Single-Lane Roundabout |
| Morris Avenue @<br>Maple Street | Intersection Avg | C, 22 seconds          | C, 18 seconds        | A, 8 seconds           |
|                                 | Eastbound        | D, 31 seconds          | C, 21 seconds        | A, 9 seconds           |
|                                 | Northbound       | A, 10 seconds          | B, 15 seconds        | A, 8 seconds           |
|                                 | Westbound-Left   | A, 0 seconds           | C, 18 seconds        | A, 7 seconds           |
|                                 | Westbound-Thru   | A, 0 seconds           | A, 0 seconds         |                        |

## Analysis of Needed Safety Improvements

Reported collisions in the Town were reviewed from 2014 through available 2019 data (approximately June 2019). Overall, there were very few collision patterns in the Town. The most common collision occurrence was collisions involving parked cars on 1<sup>st</sup> Street. It is anticipated that such occurrences will be reduced with South First Street as a one-way street.

Some streets and sidewalks impair wheelchair access and pedestrian safety. Wheelchair access on sidewalks could be improved by replacing and adding ramps and sidewalks. Most curbs in the downtown area are now in compliance with American Disabilities Act (ADA) wheelchair access requirements. Parking configurations could be improved to prevent backing into oncoming traffic in some areas.

## Analysis of Projected Transportation Needs

Most existing streets and sidewalks require annual maintenance to retain their viability for vehicular and pedestrian traffic.

The Town's roads and intersections can accommodate this growth, but the primary impact is the commercial and tourist traffic superimposed over the local demands. Intersections and roadways are projected to meet the needs of future peak-season volumes. However, safety and operations should be continuously monitored.

## Future Transit Needs

The Town of La Conner also needs to work closely with the Skagit Council on Aging (SCOA) and the Skagit County Commissioners to ensure that Skagit Transit service for seniors in La Conner is maintained, enhanced, and increased over the next few years. Improving transit headways to hourly or better should be a primary goal for community groups in the Town to ensure all populations have accessibility to destinations and services. As the population of La Conner ages, there will be more demand for the specialized transportation service. In addition, the town has initiated a discussion with Skagit Transit regarding the

feasibility of initiating a transit service for tourists along North and South First Streets.

### **Future Pedestrian/Bicycle Lane Needs**

Because of the limited paved right-of-way on Maple Avenue, there is no room to install a bicycle lane that would connect the feeder roads into town with Pioneer Park and points west. However, the Town has expressed desire to implement traffic calming techniques along Maple Avenue to increase pedestrian/bicycle safety. Speed data collected in 2019 on Maple Avenue south of Caledonia Street showed an average vehicle speed of 29 mph and an 85<sup>th</sup>-percentile speed of 32 mph. Both of these speeds are higher than the 25-mph posted speed limit. Improvements could involve speed humps, speed feedback signs, or other pavement markings.

In addition to improvements to Maple Avenue, the Town has also expressed interest in pedestrian improvements along Morris Street. Specifically, the Town should prioritize constructing pedestrian bulb-outs at all intersections along the Morris Street corridor in order to reduce the distance pedestrians are required to walk while crossing vehicle travel lanes.

